Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos

被引:40
作者
Jafarian, Yasamin [1 ]
Park, Hyun Soo [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR46437.2021.01256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key challenge of learning the geometry of dressed humans lies in the limited availability of the ground truth data (e.g., 3D scanned models), which results in the performance degradation of 3D human reconstruction when applying to real-world imagery. We address this challenge by leveraging a new data resource: a number of social media dance videos that span diverse appearance, clothing styles, performances, and identities. Each video depicts dynamic movements of the body and clothes of a single person while lacking the 3D ground truth geometry. To utilize these videos, we present a new method to use the local transformation that warps the predicted local geometry of the person from an image to that of another image at a different time instant. This allows self-supervision as enforcing a temporal coherence over the predictions. In addition, we jointly learn the depth along with the surface normals that are highly responsive to local texture, wrinkle, and shade by maximizing their geometric consistency. Our method is end-to-end trainable, resulting in high fidelity depth estimation that predicts fine geometry faithful to the input real image. We demonstrate that our method outperforms the state-of-the-art human depth estimation and human shape recovery approaches on both real and rendered images.
引用
收藏
页码:12748 / 12757
页数:10
相关论文
共 56 条
[1]  
Alldieck H., 2018, CVPR
[2]   Tex2Shape: Detailed Full Human Body Geometry From a Single Image [J].
Alldieck, Thiemo ;
Pons-Moll, Gerard ;
Theobalt, Christian ;
Magnor, Marcus .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2293-2303
[3]  
[Anonymous], 2012, 1 INT WORKSH RE ID
[4]  
[Anonymous], 2018, CVPR
[5]  
[Anonymous], 2017, CVPR, DOI DOI 10.1109/CVPR.2017.461
[6]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.01123
[7]  
[Anonymous], 2001, TPAMI
[8]  
[Anonymous], 2018, ECCV, DOI DOI 10.1007/978-3-030-01234-2_2
[9]  
[Anonymous], 2005, SIGGRAPH
[10]  
[Anonymous], 2005, SIGGRAPH 05