Twisted Traces and Positive Forms on Generalized q-Weyl Algebras

被引:1
作者
Klyuev, Daniil [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
quantization; trace; inner product; star-product;
D O I
10.3842/SIGMA.2022.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a generalized q-Weyl algebra, it is generated by u, v, Z, Z(-1) with relations ZuZ(-1) = q(2)u, ZvZ(-1) = q(-2)v, uv = P(q(-1)Z), vu = P(qZ), where P is a Laurent polynomial. A Hermitian form (.,.) on A is called invariant if (Za, b) = (a, bZ(-1)), (ua, b) = (a, sbv), (va, b) = (a, s(-1)bu) for some s is an element of C with |s| = 1 and all a, b is an element of A. In this paper we classify positive definite invariant Hermitian forms on generalized q-Weyl algebras.
引用
收藏
页数:28
相关论文
共 11 条
[1]  
Bavula V. V., 1993, St. Petersburg Math. J, V4, P71
[2]   Deformation Quantization and Superconformal Symmetry in Three Dimensions [J].
Beem, Christopher ;
Peelaers, Wolfger ;
Rastelli, Leonardo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) :345-392
[3]  
Dedushenko M, 2021, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2021)050
[4]   Coulomb branch operators and mirror symmetry in three dimensions [J].
Dedushenko, Mykola ;
Fam, Yale ;
Pufu, Silviu S. ;
Yacoby, Ran .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04)
[5]   A one-dimensional theory for Higgs branch operators [J].
Dedushenko, Mykola ;
Pufu, Silviu S. ;
Yacoby, Ran .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03)
[6]   Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A [J].
Etingof, Pavel ;
Klyuev, Daniil ;
Rains, Eric ;
Stryker, Douglas .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
[7]   Short Star-Products for Filtered Quantizations, I [J].
Etingof, Pavel ;
Stryker, Douglas .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
[8]  
Klyuev, ARXIV200311508
[9]  
Klyuev, GEN STAR PRODU UNPUB
[10]  
MUMFORD D., 1983, Progress in Math., V28