NEW HILBERT DYNAMIC INEQUALITIES ON TIME SCALES

被引:14
作者
Saker, S. H. [1 ]
Ahmed, A. M. [2 ]
Rezk, H. M. [2 ]
O'Regan, D. [3 ]
Agarwal, R. P. [4 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[4] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2017年 / 20卷 / 04期
关键词
Hilbert's inequality; Holder's inequality; Jensen's inequality; time scales; HARDY-TYPE INEQUALITIES;
D O I
10.7153/mia-2017-20-65
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove some new dynamic inequalities of Hilbert type on time scales. From these inequalities, as special cases, we will formulate some special integral and discrete inequalities. The main results are proved using some algebraic inequalities, Holder's inequality, Jensen's inequality and a chain rule on time scales.
引用
收藏
页码:1017 / 1039
页数:23
相关论文
共 19 条
  • [1] Agarwal R.P., 2014, Dynamic Inequalities on Time Scales
  • [2] Bohner M, 2005, DYNAM SYST APPL, V14, P579
  • [3] Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
  • [4] Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
  • [5] SOME DYNAMIC HARDY-TYPE INEQUALITIES WITH GENERAL KERNEL
    Bohner, Martin
    Nosheen, Ammara
    Pecaric, Josip
    Younus, Awais
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 185 - 199
  • [6] Debnath L., 2012, Int. J. Math. Math. Sci, V2012, P871845, DOI [10.1155/2012/871845, DOI 10.1155/2012/871845]
  • [7] Donchev T., 2013, ISRN Math. Anal, V2013, P9
  • [8] Hardy G., 1952, INEQUALITIES
  • [9] Hardy G.H., 1929, J LOND MATH SOC, V4, P199
  • [10] Hardy G.H., 1933, J. Lond. Math. Soc., V8, P114, DOI 10.1112/jlms/s1-8.2.114