New bounds on the expected length of one-to-one codes

被引:18
作者
Blundo, C
DePrisco, R
机构
[1] Dipartimento di Informatica ed Applicazioni, Università di Salerno
关键词
source coding; one-to-one codes; nonprefix codes;
D O I
10.1109/18.481795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence we provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L greater than or equal to H - log(H + 1) - H log(1 + 1/H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as function of H and the most Likely source letter probability.
引用
收藏
页码:246 / 250
页数:5
相关论文
共 6 条
[1]   A LOWER-BOUND ON THE EXPECTED LENGTH OF ONE-TO-ONE CODES [J].
ALON, N ;
ORLITSKY, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1670-1672
[2]   SOME EQUIVALENCES BETWEEN SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY [J].
LEUNGYANCHEONG, SK ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :331-338
[3]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[4]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (04) :623-656
[5]   ACHIEVABLE BOUND FOR OPTIMAL NOISELESS CODING OF A RANDOM VARIABLE. [J].
Verriest, Erik I. .
IEEE Transactions on Information Theory, 1986, IT-32 (04) :592-594
[6]   UPPER BOUND ON ENTROPY SERIES [J].
WYNER, AD .
INFORMATION AND CONTROL, 1972, 20 (02) :176-&