Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

被引:21
作者
Jaafar, Miriam [1 ]
Martinez-Martin, David [1 ]
Cuenca, Mariano [2 ]
Melcher, John [3 ]
Raman, Arvind [4 ,5 ]
Gomez-Herrero, Julio [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Serv Gen Apoyo Invest, E-28049 Madrid, Spain
[3] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[4] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47904 USA
[5] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47904 USA
关键词
atomic force microscopy; control systems; dissipation; frequency modulation; noncontact; FREQUENCY; DISSIPATION; CANTILEVERS; SURFACE; SAMPLES; ENERGY;
D O I
10.3762/bjnano.3.38
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode.
引用
收藏
页码:336 / 344
页数:9
相关论文
共 31 条
[1]   FREQUENCY-MODULATION DETECTION USING HIGH-Q CANTILEVERS FOR ENHANCED FORCE MICROSCOPE SENSITIVITY [J].
ALBRECHT, TR ;
GRUTTER, P ;
HORNE, D ;
RUGAR, D .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (02) :668-673
[2]   Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects [J].
Anczykowski, B ;
Kruger, D ;
Fuchs, H .
PHYSICAL REVIEW B, 1996, 53 (23) :15485-15488
[3]   Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: Characterization of interatomic van der Waals forces [J].
Ashino, M ;
Schwarz, A ;
Behnke, T ;
Wiesendanger, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :136101-1
[4]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[5]   True atomic resolution in liquid by frequency-modulation atomic force microscopy [J].
Fukuma, T ;
Kobayashi, K ;
Matsushige, K ;
Yamada, H .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[6]   Dynamic atomic force microscopy methods [J].
García, R ;
Pérez, R .
SURFACE SCIENCE REPORTS, 2002, 47 (6-8) :197-301
[7]   Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy [J].
García, R ;
San Paulo, A .
PHYSICAL REVIEW B, 1999, 60 (07) :4961-4967
[8]   Interplay between nonlinearity, scan speed, damping, and electronics in frequency modulation atomic-force microscopy -: art. no. 146104 [J].
Gauthier, M ;
Pérez, R ;
Arai, T ;
Tomitori, M ;
Tsukada, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (14)
[9]   Advances in atomic force microscopy [J].
Giessibl, FJ .
REVIEWS OF MODERN PHYSICS, 2003, 75 (03) :949-983
[10]   ATOMIC-RESOLUTION OF THE SILICON (111)-(7X7) SURFACE BY ATOMIC-FORCE MICROSCOPY [J].
GIESSIBL, FJ .
SCIENCE, 1995, 267 (5194) :68-71