Existence of periodic motions for dynamical systems with finite delay

被引:0
作者
Zhao, Jiemin [1 ]
机构
[1] Beijing Union Univ, Dept Appl Math & Phys, Beijing 100101, Peoples R China
来源
IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II | 2008年
关键词
boundedness; dynamical system; model; periodic motion;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a concise existence result of periodic motions for nonlinear dynamical system x(t) + ax(t) + [2+sin(bx(t)] f(x(t-r)) = cos(omega t + phi) by means of the analysis and computing method.
引用
收藏
页码:2003 / 2004
页数:2
相关论文
共 50 条
[31]   Bounds on Sizes of Finite Bisimulations of Pfaffian Dynamical Systems [J].
Margarita Korovina ;
Nicolai Vorobjov .
Theory of Computing Systems, 2008, 43 :498-515
[32]   Bounds on Sizes of Finite Bisimulations of Pfaffian Dynamical Systems [J].
Korovina, Margarita ;
Vorobjov, Nicolai .
THEORY OF COMPUTING SYSTEMS, 2008, 43 (3-4) :498-515
[33]   EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF DIFFERENCE EQUATIONS WITH INFINITE DELAY [J].
Nieto, Juan J. ;
Ouahab, Abdelghani ;
Slimani, Mohammed A. .
GLASNIK MATEMATICKI, 2018, 53 (01) :123-141
[34]   Stage-structured population systems with temporally periodic delay [J].
Wu, Xiaotian ;
Magpantay, Felicia Maria G. ;
Wu, Jianhong ;
Zou, Xingfu .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (16) :3464-3481
[35]   Modification of the Large Parameter Approach for the Periodic Solutions of Nonlinear Dynamical Systems [J].
Ismail, A. I. ;
Amer, T. S. ;
Amer, W. S. .
MATHEMATICS, 2023, 11 (14)
[36]   Periodic solutions for dynamical systems on non-complete Riemannian manifolds [J].
Candela, A. M. ;
Salvatore, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E379-E388
[37]   ENTROPY OPERATOR FOR CONTINUOUS DYNAMICAL SYSTEMS OF FINITE TOPOLOGICAL ENTROPY [J].
Rahimi, Mehdi ;
Riazi, Abdolhamid .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (04) :883-892
[38]   LDG method for reaction-diffusion dynamical systems with time delay [J].
Li, Dongfang ;
Zhang, Chengjian ;
Qin, Hongyu .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) :9173-9181
[39]   EXISTENCE, UNIQUENESS, AND STABILITY OF SLOWLY OSCILLATING PERIODIC SOLUTIONS FOR DELAY DIFFERENTIAL EQUATIONS WITH NONNEGATIVITY CONSTRAINTS [J].
Lipshutz, David ;
Williams, Ruth J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) :4467-4535
[40]   Analysis of Lyapunov-Krasovskii stability for dynamical systems with time delay [J].
Zhang, Xiaoyan ;
Sun, Jianqiao ;
Ding, Qian .
Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2013, 47 (05) :72-76