Epidemic spreading in modular time-varying networks

被引:81
作者
Nadini, Matthieu [1 ,6 ]
Sun, Kaiyuan [2 ]
Ubaldi, Enrico [3 ]
Starnini, Michele [4 ,5 ]
Rizzo, Alessandro [6 ]
Perra, Nicola [7 ]
机构
[1] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
[2] Northeastern Univ, Lab Modeling Biol & Sociotech Syst, Boston, MA 02115 USA
[3] ISI Fdn, Inst Sci Interchange, Turin, Italy
[4] Univ Barcelona, Dept Fis Fondamental, Marti i Franques 1, E-08028 Barcelona, Spain
[5] Univ Barcelona, UBICS, Barcelona, Spain
[6] Politecn Torino, Dipartimento Elettron & Telecomunicaz, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[7] Univ Greenwich, Ctr Business Networks Anal, London, England
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
MODEL;
D O I
10.1038/s41598-018-20908-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To this end, we introduce and analytically characterise a model of time-varying networks with tunable modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR, models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models. Interestingly, we find that while the presence of tightly connected clusters inhibits SIR processes, it speeds up SIS phenomena. In this case, we observe that modular structures induce a reduction of the threshold with respect to time-varying networks without communities. We confirm the theoretical results by means of extensive numerical simulations both on synthetic graphs as well as on a real modular and temporal network.
引用
收藏
页数:11
相关论文
共 90 条
  • [81] Tangudu J.K., 2011, Proc. IEEE Vehicle Power and Propulsion Conference, P1, DOI DOI 10.1109/VPPC.2011.6043171
  • [82] The role of endogenous and exogenous mechanisms in the formation of R&D networks
    Tomasello, Mario V.
    Perra, Nicola
    Tessone, Claudio J.
    Karsai, Marton
    Schweitzer, Frank
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [83] Burstiness and tie activation strategies in time-varying social networks
    Ubaldi, Enrico
    Vezzani, Alessandro
    Karsai, Marton
    Perra, Nicola
    Burioni, Raffaella
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [84] Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation
    Ubaldi, Enrico
    Perra, Nicola
    Karsai, Myrton
    Vezzani, Alessandro
    Burioni, Raffaella
    Vespignani, Alessandro
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [85] Analytical Computation of the Epidemic Threshold on Temporal Networks
    Valdano, Eugenio
    Ferreri, Luca
    Poletto, Chiara
    Colizza, Vittoria
    [J]. PHYSICAL REVIEW X, 2015, 5 (02):
  • [86] Modelling dynamical processes in complex socio-technical systems
    Vespignani, Alessandro
    [J]. NATURE PHYSICS, 2012, 8 (01) : 32 - 39
  • [87] How memory generates heterogeneous dynamics in temporal networks
    Vestergaard, Christian L.
    Genois, Mathieu
    Barrat, Alain
    [J]. PHYSICAL REVIEW E, 2014, 90 (04):
  • [88] Wang Y, 2003, SYM REL DIST SYST, P25
  • [89] How community structure influences epidemic spread in social networks
    Wu, Xiaoyan
    Liu, Zonghua
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (2-3) : 623 - 630
  • [90] Continuous-Time Discrete-Distribution Theory for Activity-Driven Networks
    Zino, Lorenzo
    Rizzo, Alessandro
    Porfiri, Maurizio
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (22)