On sums of a prime and four prime squares in short intervals

被引:5
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
美国国家科学基金会;
关键词
exponential sums over primes; circle method; Waring-Goldbach problems;
D O I
10.1016/j.jnt.2007.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are able to sharpen Hua's classical result by showing that each sufficiently large integer N not equivalent to 1 (mod 3) can be written as [GRAPHICS] where U = N41/100+epsilon and p, pj are prime's. This result improves a previous result with U = N41/100+epsilon replaced by U =N5/11+epsilon. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:805 / 819
页数:15
相关论文
共 10 条
[1]   Hua's theorem for five almost equal prime squares [J].
Bauer, Claus ;
Wang, Yonghui .
ARCHIV DER MATHEMATIK, 2006, 86 (06) :546-560
[2]   Mean values of Dirichlet polynomials and applications to linear equations with prime variables [J].
Choi, Stephen Kwok-Kwong ;
Kumchev, Angel V. .
ACTA ARITHMETICA, 2006, 123 (02) :125-142
[3]   LARGE SIEVE DENSITY ESTIMATE NEAR SIGMA=1 [J].
GALLAGHER, PX .
INVENTIONES MATHEMATICAE, 1970, 11 (04) :329-+
[4]  
HUA LK, 1938, Q J MATH OXFORD SER, V9, P68
[5]  
Iwaniec H., 2004, AM MATH SOC, V53
[6]   ON GENERALIZED QUADRATIC EQUATIONS IN 3 PRIME VARIABLES [J].
LEUNG, MC ;
LIU, MC .
MONATSHEFTE FUR MATHEMATIK, 1993, 115 (1-2) :133-167
[7]  
Liu JY, 1996, ACTA ARITH, V77, P369
[8]   On Lagrange's theorem with prime variables [J].
Liu, JY .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :453-462
[9]   On sums of a prime and four prime squares in short intervals [J].
Meng, XM .
ACTA MATHEMATICA HUNGARICA, 2004, 105 (04) :261-283
[10]  
刘建亚, 2006, [中国科学. A辑, 数学, Science in China. A], V36, P448