Grain size dependence of hardness in nanocrystalline silicon carbide

被引:33
作者
Pan, Chenglong [1 ,2 ]
Zhang, Limin [1 ,2 ]
Jiang, Weilin [3 ]
Setyawan, Wahyu [3 ]
Chen, Liang [1 ,2 ]
Li, Zhiming [1 ,2 ]
Liu, Ning [1 ,2 ]
Wang, Tieshan [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou, Gansu, Peoples R China
[2] Lanzhou Univ, Engn Res Ctr Neutron Applicat Technol, Minist Educ, Lanzhou, Gansu, Peoples R China
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
基金
中国国家自然科学基金;
关键词
Hardness; Amorphization; Molecular dynamics; Nanocrystalline ceramics; Silicon carbide; AMORPHIZATION; IRRADIATION;
D O I
10.1016/j.jeurceramsoc.2020.05.060
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The response of nanocrystalline silicon carbide (nc-SiC) to nanoindentation is investigated using molecular dynamics (MD) simulation. It is found that the hardness of the nc-SiC decreases with decreasing grain size, showing an inverse Hall-Perch relationship. The behavior is primarily attributed to the reduced number of intact covalent bonds with grain refinement. Dislocation nucleation and growth in nc-SiC are strongly suppressed by the grain boundaries (GBs). In addition to the dislocation region in the grains, the indentation-induced amorphization of nanograins proceeds preferentially from the GBs, leading to grain shrinkage until the grains are fully amorphized. The results provide an improved understanding of the mechanical properties in nc-SiC and other nanostructured covalent materials.
引用
收藏
页码:4396 / 4402
页数:7
相关论文
共 44 条
  • [1] Planar Defect Nucleation and Annihilation Mechanisms in Nanocontact Plasticity of Metal Surfaces
    Alcala, Jorge
    Dalmau, Roger
    Franke, Oliver
    Biener, Monika
    Biener, Juergen
    Hodge, Andrea
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [2] What is behind the inverse Hall-Petch effect in nanocrystalline materials?
    Carlton, C. E.
    Ferreira, P. J.
    [J]. ACTA MATERIALIA, 2007, 55 (11) : 3749 - 3756
  • [3] Multimillion-atom nanoindentation simulation of crystalline silicon carbide: Orientation dependence and anisotropic pileup
    Chen, Hsiu-Pin
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Vashishta, Priya
    Szlufarska, Izabela
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
  • [4] ATOMIC-LEVEL STRESS IN AN INHOMOGENEOUS SYSTEM
    CHEUNG, KS
    YIP, S
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 70 (10) : 5688 - 5690
  • [5] Chiang Y.-M., 1992, Nanostructured Materials, V1, P235, DOI 10.1016/0965-9773(92)90101-3
  • [6] Atomistic simulations of spherical indentations in nanocrystalline gold
    Feichtinger, D
    Derlet, PM
    Van Swygenhoven, H
    [J]. PHYSICAL REVIEW B, 2003, 67 (02)
  • [7] PROCEDURE FOR THE CONSTRUCTION OF VORONOI POLYHEDRA
    FINNEY, JL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 32 (01) : 137 - 143
  • [8] MICROSCOPIC STRUCTURE OF AMORPHOUS COVALENT ALLOYS PROBED BY ABINITIO MOLECULAR-DYNAMICS - SIC
    FINOCCHI, F
    GALLI, G
    PARRINELLO, M
    BERTONI, CM
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (20) : 3044 - 3047
  • [9] Fischer-Cripps A.C., 2004, NANOINDENTATION
  • [10] Hardness of covalent crystals
    Gao, FM
    He, JL
    Wu, ED
    Liu, SM
    Yu, DL
    Li, DC
    Zhang, SY
    Tian, YJ
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (01)