High toughness fibrillating metal-elastomer interfaces: On the role of discrete fibrils within the fracture process zone

被引:3
作者
Vossen, B. G. [1 ]
van der Sluis, O. [1 ,2 ]
Schreurs, P. J. G. [1 ]
Geers, M. G. D. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Philips Res Labs, High Tech Campus 34, NL-5656 AE Eindhoven, Netherlands
关键词
Fibrillation; Stretchable electronics; Delamination; Fracture process zone; Work-of-separation; PDMS; DEFORMATION-BEHAVIOR; ADHESIVE CONTACT; THIN-FILM; MECHANICS; DESIGN; DELAMINATION; TACK; HYDROGELS; SURFACE;
D O I
10.1016/j.engfracmech.2016.05.019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Fibrillating metal-elastomer interfacial systems, typically used in stretchable electronics applications, can exhibit remarkably high values for the interface fracture toughness. Consequently, a huge gap exists between the low adhesion energy at the microscopic scale and the measured macroscopic work of separation. This contribution aims to close this energy gap by unravelling the underlying dissipative mechanisms through a multi-scale approach. The first scale transition was established in earlier work, and concerned the formation and deformation of a single fibril at the copper-rubber interface up to failure. It was shown that the obtained work of separation was significantly larger than the small-scale interface adhesion, yet a decade too small with respect to the experimental values. In order to close the energy gap, in this contribution, the second scale transition is achieved by considering a finite number of elongating discrete hyperelastic fibrils within the fracture process zone. It is shown that the dynamic release of the stored elastic energy by fibril fracture that results from the spatial discreteness of multiple fibrils, the interaction with the adjacent deforming bulk elastomer material and the highly nonlinear behavior of the elastomer provides an explanation for the high work of separation values. In addition, an intrinsic shortcoming of cohesive zone formulations at the macroscopic scale is revealed. The results provide a mechanistic understanding of the physics involved with interface delamination through fibrillation in metal-elastomer interfaces. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 45 条
[1]  
Brown K, 2002, MACROMOL MATER ENG, V287, P163, DOI 10.1002/1439-2054(20020301)287:3<163::AID-MAME163>3.0.CO
[2]  
2-P
[3]   Tuning the geometrical parameters of biomimetic fibrillar structures to enhance adhesion [J].
Chen, Shaohua ;
Soh, Ai Kah .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (20) :373-382
[4]   Integrating wireless ECG monitoring in textiles [J].
Coosemans, Johan ;
Hermans, Bart ;
Puers, Robert .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 130 (48-53) :48-53
[5]   Pressure-sensitive adhesives: An introductory course [J].
Creton, C .
MRS BULLETIN, 2003, 28 (06) :434-439
[6]   Adhesion enhancement in a biomimetic fibrillar interface [J].
Glassmaker, NJ ;
Jagota, A ;
Hui, CY .
ACTA BIOMATERIALIA, 2005, 1 (04) :367-375
[7]   Design of biomimetic fibrillar interfaces: 1. Making contact [J].
Glassmaker, NJ ;
Jagota, A ;
Hui, CY ;
Kim, J .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2004, 1 (01) :23-33
[8]   Design of metal interconnects for stretchable electronic circuits [J].
Gonzalez, Mario ;
Axisa, Fabrice ;
BuIcke, Mathieu Vanden ;
Brosteaux, Dominique ;
Vandevelde, Bart ;
Vanfleteren, Jan .
MICROELECTRONICS RELIABILITY, 2008, 48 (06) :825-832
[9]   Discrete contact mechanics of a fibrillar surface with backing layer interactions [J].
Guidoni, G. M. ;
Schillo, D. ;
Hangen, U. ;
Castellanos, G. ;
Arzt, E. ;
McMeeking, R. M. ;
Bennewitz, R. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (10) :1571-1581
[10]   Copper-rubber interface delamination in stretchable electronics [J].
Hoefnagels, J. P. M. ;
Neggers, J. ;
Timmermans, P. H. M. ;
van der Sluis, O. ;
Geers, M. G. D. .
SCRIPTA MATERIALIA, 2010, 63 (08) :875-878