Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties

被引:176
作者
Li, Xinming [1 ]
Zhao, Tianshuo [1 ]
Wang, Kunlin [1 ]
Yang, Ying [2 ]
Wei, Jinquan [1 ]
Kang, Feiyu [4 ]
Wu, Dehai [1 ]
Zhu, Hongwei [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mfg Mat Proc Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Grad Sch Shenzhen, Adv Mat Inst, Shenzhen 518055, Peoples R China
基金
美国国家科学基金会;
关键词
LARGE-AREA; OXIDE; SUPERCAPACITOR; NANOSHEETS; NANOSTRUCTURES; TRANSPARENT; ELECTRODE; GRAPHITE; SHEETS;
D O I
10.1021/la202380g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integration of graphene into macroscopic architectures represents the first step toward creating a new class of graphene-based nanodevices. We report a novel yet simple approach to fabricate graphene fibers, a porous and monolithic macrostructure, from chemical vapor deposition grown graphene films. Graphene is first self-assembled from a 2D film to a 1D fiberlike structure in an organic solvent (e.g., ethanol, acetone) and than dried to give the porous and crumpled structure. The method developed here is scalable and controllable, delivering tunable morphology and pore structure by controlling the evaporation of solvents with suitable surface tension. The fibers are 20-50 mu m thick, with a typical electrical conductivity of similar to 1000 S/m. The cyclic voltammetric studies show typical capacitive behavior for the porous graphene fibers with good rate stability and capacitance values ranging from 0.6 to 1.4 mF/cm(2). Decorated with only 1-3 wt % MnO(2), the graphene/MnO(2) composites exhibit remarkable enhancement of combined performance both with respect to discharge capacitance (up to 12.4 mF/cm(2)) and cycling stability. This special structure could facilitate chemical doping and electrochemical energy storage and find applications in catalyst supports, sensors, supercapacitors, Li ion batteries, etc.
引用
收藏
页码:12164 / 12171
页数:8
相关论文
共 38 条
  • [1] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
  • [2] A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface
    Biswas, Sanjib
    Drzal, Lawrence T.
    [J]. NANO LETTERS, 2009, 9 (01) : 167 - 172
  • [3] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
  • [4] Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors
    Choi, Bong Gill
    Park, HoSeok
    Park, Tae Jung
    Yang, Min Ho
    Kim, Joon Sung
    Jang, Sung-Yeon
    Heo, Nam Su
    Lee, Sang Yup
    Kong, Jing
    Hong, Won Hi
    [J]. ACS NANO, 2010, 4 (05) : 2910 - 2918
  • [5] Langmuir-Blodgett Assembly of Graphite Oxide Single Layers
    Cote, Laura J.
    Kim, Franklin
    Huang, Jiaxing
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) : 1043 - 1049
  • [6] Preparation and characterization of graphene oxide paper
    Dikin, Dmitriy A.
    Stankovich, Sasha
    Zimney, Eric J.
    Piner, Richard D.
    Dommett, Geoffrey H. B.
    Evmenenko, Guennadi
    Nguyen, SonBinh T.
    Ruoff, Rodney S.
    [J]. NATURE, 2007, 448 (7152) : 457 - 460
  • [7] Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    Eda, Goki
    Fanchini, Giovanni
    Chhowalla, Manish
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (05) : 270 - 274
  • [8] A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors
    Fan, Zhuangjun
    Yan, Jun
    Zhi, Linjie
    Zhang, Qiang
    Wei, Tong
    Feng, Jing
    Zhang, Milin
    Qian, Weizhong
    Wei, Fei
    [J]. ADVANCED MATERIALS, 2010, 22 (33) : 3723 - +
  • [9] Self-Assembly of Cationic Polyelectrolyte-Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing
    Fang, Youxing
    Guo, Shaojun
    Zhu, Chengzhou
    Zhai, Yueming
    Wang, Erkang
    [J]. LANGMUIR, 2010, 26 (13) : 11277 - 11282
  • [10] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)