Geometric integrator for simulations in the canonical ensemble

被引:10
作者
Tapias, Diego [1 ]
Sanders, David P. [1 ,2 ]
Bravetti, Alessandro [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
关键词
TEMPERATURE MOLECULAR-DYNAMICS; ERGODICITY; SYSTEMS;
D O I
10.1063/1.4961506
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 34 条
  • [1] Allen M. P., 1989, Computer Simulation of Liquids
  • [2] [Anonymous], 2010, STAT MECH THEORY MOL
  • [3] Thermostat algorithm for generating target ensembles
    Bravetti, A.
    Tapias, D.
    [J]. PHYSICAL REVIEW E, 2016, 93 (02)
  • [4] Bravetti A., 2016, ARXIV160408266
  • [5] CONSTANT-TEMPERATURE MOLECULAR-DYNAMICS WITH MOMENTUM CONSERVATION
    CHO, K
    JOANNOPOULOS, JD
    KLEINMAN, L
    [J]. PHYSICAL REVIEW E, 1993, 47 (05): : 3145 - 3151
  • [6] ERGODICITY AND DYNAMIC PROPERTIES OF CONSTANT-TEMPERATURE MOLECULAR-DYNAMICS
    CHO, K
    JOANNOPOULOS, JD
    [J]. PHYSICAL REVIEW A, 1992, 45 (10): : 7089 - 7097
  • [7] THE NOSE-HOOVER THERMOSTAT
    EVANS, DJ
    HOLIAN, BL
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) : 4069 - 4074
  • [8] Reversible measure-preserving integrators for non-Hamiltonian systems
    Ezra, Gregory S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (03)
  • [9] Frenkel D., 1996, Understanding molecular simulation, DOI DOI 10.1016/B978-0-12-267351-1.X5000-7
  • [10] Tsallis dynamics using the Nose-Hoover approach
    Fukuda, I
    Nakamura, H
    [J]. PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026105