Design, fabrication and characterization of PCL electrospun scaffolds-a review

被引:503
作者
Cipitria, A. [1 ,2 ,3 ]
Skelton, A. [1 ]
Dargaville, T. R. [1 ]
Dalton, P. D. [1 ,4 ]
Hutmacher, D. W. [1 ,5 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia
[2] Charite, Ctr Musculoskeletal Surg, Berlin Brandenburg Ctr Regenerat Therapies, D-13353 Berlin, Germany
[3] Charite, Julius Wolff Inst, D-13353 Berlin, Germany
[4] Shanghai Jiao Tong Univ, Med Res Inst X, Shanghai 200030, Peoples R China
[5] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
澳大利亚研究理事会;
关键词
MESENCHYMAL STEM-CELLS; BIODEGRADABLE NANOFIBROUS SCAFFOLDS; POLYMER SURFACE MODIFICATION; HUMAN DERMAL FIBROBLASTS; HUMAN-ENDOTHELIAL CELLS; IN-VIVO DEGRADATION; EXTRACELLULAR-MATRIX; MECHANICAL-PROPERTIES; POLYCAPROLACTONE SCAFFOLDS; OSTEOGENIC DIFFERENTIATION;
D O I
10.1039/c0jm04502k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The expanding interest in electrospinning fibers for bioengineering includes a significant use of polyesters, including poly(epsilon-caprolactone) (PCL). This review summarizes literature on PCL and selected blends, and provides extensive descriptions of the broad range of parameters used in manufacturing such electrospun fibers. Furthermore the chemical, physical and biological approaches for characterizing the electrospun material are described and opinions offered on important information to include in future publications with this electrospun material.
引用
收藏
页码:9419 / 9453
页数:35
相关论文
共 186 条
[1]   Dual electric field induced alignment of electrospun nanofibers [J].
Acharya, Manoranjan ;
Arumugam, Ganesh Kumar ;
Heiden, Patricia A. .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2008, 293 (08) :666-674
[2]   MECHANISMS OF POLYMER DEGRADATION IN IMPLANTABLE DEVICES .1. POLY(CAPROLACTONE) [J].
ALI, SAM ;
ZHONG, SP ;
DOHERTY, PJ ;
WILLIAMS, DF .
BIOMATERIALS, 1993, 14 (09) :648-656
[3]   Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control [J].
Anderson, Kyle D. ;
Lu, David ;
McConney, Michael E. ;
Han, Tao ;
Reneker, Darrell H. ;
Tsukruk, Vladimir V. .
POLYMER, 2008, 49 (24) :5284-5293
[4]  
Anton F., 1934, US patent, Patent No. [US1975504A, 1975504, 1975504A]
[5]   Growth control by intracellular tension and extracellular stiffness [J].
Assoian, Richard K. ;
Klein, Eric A. .
TRENDS IN CELL BIOLOGY, 2008, 18 (07) :347-352
[6]   Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates [J].
Badami, AS ;
Kreke, MR ;
Thompson, MS ;
Riffle, JS ;
Goldstein, AS .
BIOMATERIALS, 2006, 27 (04) :596-606
[7]   The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers [J].
Baker, Brendon M. ;
Gee, Albert O. ;
Metter, Robert B. ;
Nathan, Ashwin S. ;
Marklein, Ross A. ;
Burdick, Jason A. ;
Mauck, Robert L. .
BIOMATERIALS, 2008, 29 (15) :2348-2358
[8]   Fabrication and Modeling of Dynamic Multipolymer Nanofibrous Scaffolds [J].
Baker, Brendon M. ;
Nerurkar, Nandan L. ;
Burdick, Jason A. ;
Elliott, Dawn M. ;
Mauck, Robert L. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (10)
[9]   Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions [J].
Beachley, Vince ;
Wen, Xuejun .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (07) :868-892
[10]   PROTEIN-SYNTHESIS REQUIRES CELL-SURFACE CONTACT WHILE NUCLEAR EVENTS RESPOND TO CELL-SHAPE IN ANCHORAGE-DEPENDENT FIBROBLASTS [J].
BENZEEV, A ;
FARMER, SR ;
PENMAN, S .
CELL, 1980, 21 (02) :365-372