Thermal contact resistance between two nanoparticles

被引:12
作者
Domingues, Gilberto [2 ]
Rochais, Denis [2 ]
Volz, Sebastian [1 ]
机构
[1] Ecole Cent Paris, Lab Energet & Mol, F-92295 Grande Voie Des Vignes, France
[2] CEA, Dept Materiaux, F-37260 Le Ripault, Monts, France
关键词
nanoparticles; thermal resistance; molecular dynamics;
D O I
10.1166/jctn.2008.2455
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We compute the thermal conductance between two nanoparticles in contact based on the molecular dynamics technique. The contact is generated by letting both particles stick together under van der Waals attractions. The thermal conductance is derived from the fluctuation-dissipation theorem and the time fluctuations of the exchanged power. We show that the conductance is proportional to the atoms involved in the thermal interaction. In the case of silica, the atomic contribution to the thermal conductance is in the range of 0.5 to 3 nW. K-1. This result fits to theoretical predictions based on characteristic times of the temperature fluctuation. The order of magnitude of the contact conductance is 1 mu W.K-1 when the cross section ranges from 1 to 10 nm(2).
引用
收藏
页码:153 / 156
页数:4
相关论文
共 12 条
[1]   THERMAL-CONDUCTIVITY OF A MICROPOROUS PARTICULATE MEDIUM - MOIST SILICA-GEL [J].
BJURSTROM, H ;
KARAWACKI, E ;
CARLSSON, B .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1984, 27 (11) :2025-2036
[2]   IRREVERSIBILITY AND GENERALIZED NOISE [J].
CALLEN, HB ;
WELTON, TA .
PHYSICAL REVIEW, 1951, 83 (01) :34-40
[3]   Heat transfer between two nanoparticles through near field interaction [J].
Domingues, G ;
Volz, S ;
Joulain, K ;
Greffet, JJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (08)
[4]  
Domingues G, 2004, SUPERLATTICE MICROST, V35, P227, DOI [10.1016/j.spmi.2004.01.006, 10.1016/j.spmi.2003.01.006]
[5]  
McQuarrie D., 2000, Statistical Mechanics
[6]  
Rappaport D. C., 1995, ART MOL DYNAMICS SIM
[7]   APPARENT THERMAL-CONDUCTIVITY OF EVACUATED SIO2-AEROGEL TILES UNDER VARIATION OF RADIATIVE BOUNDARY-CONDITIONS [J].
SCHEUERPFLUG, P ;
CAPS, R ;
BUTTNER, D ;
FRICKE, J .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1985, 28 (12) :2299-2306
[8]   IMPROVED HEAT-TRANSFER MODELS FOR FIBROUS INSULATIONS [J].
STARK, C ;
FRICKE, J .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1993, 36 (03) :617-625
[9]   FLAT PANEL VACUUM THERMAL INSULATION [J].
STRONG, HM ;
BUNDY, FP ;
BOVENKERK, HP .
JOURNAL OF APPLIED PHYSICS, 1960, 31 (01) :39-50
[10]  
TYE RP, 1979, THERMAL TRANSMISSION