Hybrid computational modeling methods for systems biology

被引:3
作者
Cruz, Daniel A. [1 ]
Kemp, Melissa L. [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30322 USA
来源
PROGRESS IN BIOMEDICAL ENGINEERING | 2022年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
computational modeling; systems biology; simulation; prediction; MARKUP LANGUAGE; CELL-CYCLE; NETWORKS; METABOLISM; TOOLS; LOGIC;
D O I
10.1088/2516-1091/ac2cdf
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Systems biology models are typically considered across a spectrum from mechanistic to abstracted description; however, the lines between these forms of modeling are increasingly blurred. Ever-increasing computational power is providing novel opportunities for bridging time and length scales. Furthermore, despite biological mechanisms or network topology often ill-defined, the acquisition of high-throughput data leaves modelers with the desire to leverage available measurements. This review surveys modeling tools in which two or more mathematical forms are blended to describe time-dependent processes in a multivariate system. While most commonly manifested as continuous/discrete description, other forms such as mechanistic/inference or deterministic/stochastic hybrid models can be generated. Recent innovations in hybrid modeling methodologies and new applications illustrate advantages for combining model formats to gaining biological systems level insight.
引用
收藏
页数:11
相关论文
共 75 条
  • [1] Agent Based Modelling and Simulation tools: A review of the state-of-art software
    Abar, Sameera
    Theodoropoulos, Georgios K.
    Lemarinier, Pierre
    O'Hare, Gregory M. P.
    [J]. COMPUTER SCIENCE REVIEW, 2017, 24 : 13 - 33
  • [2] Hybrid ODE/SSA Model of the Budding Yeast Cell Cycle Control Mechanism with Mutant Case Study
    Ahmadian, Mansooreh
    Wang, Shuo
    Tyson, John
    Cao, Young
    [J]. ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 464 - 473
  • [3] Boolean network simulations for life scientists
    Albert, Istvan
    Thakar, Juilee
    Li, Song
    Zhang, Ranran
    Albert, Reka
    [J]. SOURCE CODE FOR BIOLOGY AND MEDICINE, 2008, 3 (01):
  • [4] Alur R., 1992, HYBRID SYSTEMS, V736, P209, DOI [DOI 10.1007/3-540-57318-6_30, 10.1007/3-540-57318, DOI 10.1007/3-540-57318, DOI 10.1007/3-540-57318-6]
  • [5] Annapureddy Y, 2011, LECT NOTES COMPUT SC, V6605, P254, DOI 10.1007/978-3-642-19835-9_21
  • [6] [Anonymous], 2021, BioRender
  • [7] [Anonymous], 2015, LNCS, DOI [DOI 10.1007/978-3-662-46681-0, DOI 10.1007/978-3-662-46681-015]
  • [8] Multilevel modeling of Physiological Systems and Simulation Platform: PhysioDesigner, Flint and Flint K3 service
    Asai, Yoshiyuki
    Abe, Takeshi
    Okita, Masao
    Okuyama, Tomohiro
    Yoshioka, Nobukazu
    Yokoyama, Shigetsohi
    Nagaku, Masaru
    Hagihara, Ken-ichi
    Kitano, Hiroaki
    [J]. 2012 IEEE/IPSJ 12TH INTERNATIONAL SYMPOSIUM ON APPLICATIONS AND THE INTERNET (SAINT), 2012, : 215 - 219
  • [9] Specifications of insilicoML 1.0: A Multilevel Biophysical Model Description Language
    Asai, Yoshiyuki
    Suzuki, Yasuyuki
    Kido, Yoshiyuki
    Oka, Hideki
    Heien, Eric
    Nakanishi, Masao
    Urai, Takahito
    Hagihara, Kenichi
    Kurachi, Yoshihisa
    Nomura, Taishin
    [J]. JOURNAL OF PHYSIOLOGICAL SCIENCES, 2008, 58 (07) : 447 - 458
  • [10] Integrating transcriptional activity in genome-scale models of metabolism
    Banos, Daniel Trejo
    Trebulle, Pauline
    Elati, Mohamed
    [J]. BMC SYSTEMS BIOLOGY, 2017, 11