Redox synthesis and high catalytic efficiency of transition-metal nanoparticle-graphene oxide nanocomposites

被引:26
作者
Wang, Changlong [1 ,2 ]
Ciganda, Roberto [1 ]
Yate, Luis [3 ]
Tuninetti, Jimena [3 ,4 ]
Shalabaeva, Victoria [2 ]
Salmon, Lionel [2 ]
Moya, Sergio [3 ]
Ruiz, Jaime [1 ]
Astruc, Didier [1 ]
机构
[1] Univ Bordeaux, CNRS 5255, UMR, ISM, F-33405 Talence, France
[2] CNRS, UPR 8241, Lab Chim Coordinat, F-31077 Toulouse, France
[3] CCIC BiomaGUNE, Unidad Biosuperficies, Paseo Miramon 182,Edif C, Donostia San Sebastian 20009, Spain
[4] Univ Nacl La Plata, CONICET, Inst Invest Fisicoquim Teor & Aplicadas INIFTA, Diagonal 113 & 64, RA-1900 La Plata, Argentina
关键词
CHEMICAL HYDROGEN STORAGE; SPHERICAL POLYELECTROLYTE BRUSHES; BOND-DISSOCIATION ENERGIES; AQUEOUS AMMONIA-BORANE; HYDROLYTIC DEHYDROGENATION; HETEROGENEOUS CATALYSIS; RHODIUM NANOPARTICLES; ALLOY NANOPARTICLES; GOLD NANOPARTICLES; COUPLING REACTIONS;
D O I
10.1039/c7ta06182j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although nanocatalysis is a promising area, increased efficiency and greenness are actively sought. Here we report the principle of the syntheses of graphene oxide (GO)-supported metal nanocatalysts (MNPs) for a variety of transition metals including both noble metals and biometal using either exergonic or endergonic redox reactions between GO and the transition metal salts. These new nanocatalysts are highly efficient in water at ambient temperature for 4-nitrophenol reduction (the test reaction), Sonogashira coupling, azide-alkyne 1,3-cycloaddition (click reaction) and dihydrogen production upon hydrolysis of ammonia-borane and recyclable.
引用
收藏
页码:21947 / 21954
页数:8
相关论文
共 87 条
  • [1] Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts
    Aditya, Teresa
    Pal, Anjali
    Pal, Tarasankar
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (46) : 9410 - 9431
  • [2] Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane
    Akbayrak, Serdar
    Tonbul, Yalcin
    Ozkar, Saim
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 198 : 162 - 170
  • [3] Copper Nanoparticles in Click Chemistry
    Alonso, Francisco
    Moglie, Yanina
    Radivoy, Gabriel
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (09) : 2516 - 2528
  • [4] Controlled metal nanostructures: Fertile ground for coordination chemists
    Amiens, C.
    Ciuculescu-Pradines, D.
    Philippot, K.
    [J]. COORDINATION CHEMISTRY REVIEWS, 2016, 308 : 409 - 432
  • [5] Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis
    Astruc, D
    Lu, F
    Aranzaes, JR
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (48) : 7852 - 7872
  • [6] Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology
    Astruc, Didier
    [J]. NATURE CHEMISTRY, 2012, 4 (04) : 255 - 267
  • [7] Pd nanoparticles for C-C coupling reactions
    Balanta, Angelica
    Godard, Cyril
    Claver, Carmen
    [J]. CHEMICAL SOCIETY REVIEWS, 2011, 40 (10) : 4973 - 4985
  • [8] Mechanistic Studies of Ammonia Borane Dehydrogenation Catalyzed by Iron Pincer Complexes
    Bhattacharya, Papri
    Krause, Jeanette A.
    Guan, Hairong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (31) : 11153 - 11161
  • [9] Iodide ions control galvanic replacement growth of uniform rhodium nanotubes at room temperature
    Bi, Yingpu
    Lu, Gongxuan
    [J]. CHEMICAL COMMUNICATIONS, 2008, (47) : 6402 - 6404
  • [10] Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles
    Bronstein, Lyudmila M.
    Shifrina, Zinaida B.
    [J]. CHEMICAL REVIEWS, 2011, 111 (09) : 5301 - 5344