Recognition of Handwritten Chemical Organic Ring Structure Symbols Using Convolutional Neural Networks

被引:8
作者
Zheng, Lina [1 ]
Zhang, Ting [2 ]
Yu, Xinguo [2 ]
机构
[1] Cent China Normal Univ, Cent China Normal Univ Wollongong Joint Inst, Wuhan, Hubei, Peoples R China
[2] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China
来源
2019 INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION WORKSHOPS (ICDARW), VOL 5 | 2019年
基金
中国博士后科学基金;
关键词
Handwritten symbol recognition; Chemical organic ring structure symbols; convolutional neural networks;
D O I
10.1109/ICDARW.2019.40099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many types of data exhibit characteristic of rotational symmetry. Chemical Organic Ring Structure(ORS) Symbol is such a case. In this paper, we focus on offline handwritten chemical ORS Symbols recognition using convolutional neural networks(CNNs), from application point of view, in order to relax the inconvenience and ineffectiveness of the traditional click-and-drag style of interaction when input chemical notations into electronic devices; from scientific point of view, to explore the capacity of rotation invariance of CNNs using data augmentation. We propose a VGGNet-based classifier for offline handwritten chemical ORS Symbols. To evaluate it, a new dataset of 3600 samples are collected of which 90% is for training while 10% is for test. The recognition accuracy is 84.3% with VGGNet-16 and 92.4% with VGGNet-19.
引用
收藏
页码:165 / 168
页数:4
相关论文
共 50 条
[41]   Who Draw This? Caricaturist Recognition using Convolutional Neural Networks [J].
Hicsonmez, Samet ;
Samet, Nermin ;
Akba, Emre ;
Duygulu, Pinar .
2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
[42]   ROBUST SOUND EVENT RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS [J].
Zhang, Haomin ;
McLoughlin, Ian ;
Song, Yan .
2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, :559-563
[43]   Threshold center-symmetric local binary convolutional neural networks for bilingual handwritten digit recognition [J].
Al-wajih, Ebrahim ;
Ghazali, Rozaida .
KNOWLEDGE-BASED SYSTEMS, 2023, 259
[44]   Convolutional Neural Networks for Speech Recognition [J].
Abdel-Hamid, Ossama ;
Mohamed, Abdel-Rahman ;
Jiang, Hui ;
Deng, Li ;
Penn, Gerald ;
Yu, Dong .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (10) :1533-1545
[45]   An Algorithm for Classifying Handwritten Signatures Using Convolutional Networks [J].
Culqui-Culqui, German ;
Sanchez-Gordon, Sandra ;
Hernandez-Alvarez, Myriam .
IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (03) :465-473
[46]   DeepTarget: An Automatic Target Recognition Using Deep Convolutional Neural Networks [J].
Nasrabadi, Nasser M. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (06) :2687-2697
[47]   Adenocarcinoma Recognition in Endoscopy Images Using Optimized Convolutional Neural Networks [J].
Park, Hyun-Cheol ;
Kim, Yoon-Jae ;
Lee, Sang-Woong .
APPLIED SCIENCES-BASEL, 2020, 10 (05)
[48]   Food Recognition for Dietary Assessment Using Deep Convolutional Neural Networks [J].
Christodoulidis, Stergios ;
Anthimopoulos, Marios ;
Mougiakakou, Stavroula .
NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2015 WORKSHOPS, 2015, 9281 :458-465
[49]   Recognition to weightlifting postures using convolutional neural networks with evaluation mechanism [J].
He, Quantao ;
Li, Wenjuan ;
Tang, Wenquan ;
Xu, Baoguan .
MEASUREMENT & CONTROL, 2024, 57 (06) :653-663
[50]   Automatic Recognition of Electrical Grid Elements using Convolutional Neural Networks [J].
Silva, L. A. Z. ;
Vidal, V. F. ;
Silva, M. F. ;
Santos, M. F. ;
Carvalho, A. L. ;
Cerqueira, A. S. ;
Honorio, L. M. ;
Rezende, H. B. ;
Ribeiro, J. M. S. ;
Pancoti, A. A. N. ;
Regina, B. A. .
2018 22ND INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2018, :822-826