A finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: Part 2

被引:25
作者
Fallahnezhad, Khosro [1 ]
Farhoudi, Hamidreza [1 ]
Oskouei, Reza H. [1 ]
Taylor, Mark [1 ]
机构
[1] Flinders Univ S Australia, Med Device Res Inst, Adelaide, SA, Australia
关键词
CoCrMo implants; Taper junction; Daily activities; Fretting; Finite element analysis; FRETTING WEAR; TAPER JUNCTION; ORTHOPEDIC IMPLANTS; CONTACT FORCES; REPLACEMENTS; ARTHROPLASTY; PROSTHESIS; CORROSION; METAL; PARTICLES;
D O I
10.1016/j.jmbbm.2017.08.038
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A finite element model was developed to investigate the effect of loading regimes caused by various daily activities on the mechanical behaviour of the head-neck taper junction in modular hip replacements. The activities included stair up, stair down, sit to stand, stand to sit, one leg standing and knee bending. To present the real mechanical environment of the junction, in addition to the force components, the frictional moments produced by the frictional sliding of the head and cup were applied to a CoCr/CoCr junction having a 12/14 taper with a proximal mismatch angle of 0.024 degrees. This study revealed that stair up with the highest fretting work per unit of length (1.62 x 10(4) J/m) was the most critical activity, while knee bending and stand to sit with 1.96 x 10(3) J/m were the least critical activities. For all the activities, the superolateral region of the neck was identified as the most critical region in terms of having larger values of fretting work per unit of area. This study showed also that the relative micro-motions and contact stresses occurring at the head-neck interface for all the studied activities are mostly in the range of 0-38 mu m and 0-350 MPa, respectively. These ranges may be accordingly employed for conducting relevant in-vitro tests to more realistically represent the mechanical environment of taper junctions with the same materials and geometry studied in this work.
引用
收藏
页码:164 / 170
页数:7
相关论文
共 30 条
[1]   Hip contact forces and gait patterns from routine activities [J].
Bergmann, G ;
Deuretzbacher, G ;
Heller, M ;
Graichen, F ;
Rohlmann, A ;
Strauss, J ;
Duda, GN .
JOURNAL OF BIOMECHANICS, 2001, 34 (07) :859-871
[2]   Hip joint contact forces during stumbling [J].
Bergmann, G ;
Graichen, F ;
Rohlmann, A .
LANGENBECKS ARCHIVES OF SURGERY, 2004, 389 (01) :53-59
[3]   Stress and micromotion in the taper lock joint of a modular segmental bone replacement prosthesis [J].
Chu, YH ;
Elias, JJ ;
Duda, GN ;
Frassica, FJ ;
Chao, EYS .
JOURNAL OF BIOMECHANICS, 2000, 33 (09) :1175-1179
[4]   Taperosis DOES HEAD LENGTH AFFECT FRETTING AND CORROSION IN TOTAL HIP ARTHROPLASTY? [J].
Del Balso, C. ;
Teeter, M. G. ;
Tan, S. C. ;
Lanting, B. A. ;
Howard, J. L. .
BONE & JOINT JOURNAL, 2015, 97B (07) :911-916
[5]   Total hip arthroplasty head-neck contact mechanics: A stochastic investigation of key parameters [J].
Donaldson, Finn E. ;
Coburn, James C. ;
Siegel, Karen Lohmann .
JOURNAL OF BIOMECHANICS, 2014, 47 (07) :1634-1641
[6]  
Doorn PF, 1998, J BIOMED MATER RES, V42, P103, DOI 10.1002/(SICI)1097-4636(199810)42:1<103::AID-JBM13>3.0.CO
[7]  
2-M
[8]   Environmental effect on fretting of metallic materials for orthopaedic implants [J].
Duisabeau, L ;
Combrade, P ;
Forest, B .
WEAR, 2004, 256 (7-8) :805-816
[9]   Finite element analysis of the head-neck taper interface of modular hip prostheses [J].
Dyrkacz, R. M. R. ;
Brandt, J. M. ;
Morrison, J. B. ;
O' Brien, S. T. ;
Ojo, O. A. ;
Turgeon, T. R. ;
Wyss, U. P. .
TRIBOLOGY INTERNATIONAL, 2015, 91 :206-213
[10]   The effect of different assembly loads on taper junction fretting wear in total hip replacements [J].
English, Russell ;
Ashkanfar, Ariyan ;
Rothwell, Glynn .
TRIBOLOGY INTERNATIONAL, 2016, 95 :199-210