Gadolinium-doped magnetite nanoparticles from a single-source precursor

被引:37
作者
Douglas, F. J. [1 ]
MacLaren, D. A. [2 ]
Maclean, N. [1 ]
Andreu, I. [3 ]
Kettles, F. J. [1 ]
Tuna, F. [4 ]
Berry, C. C. [5 ]
Castro, M. [3 ]
Murrie, M. [1 ]
机构
[1] Univ Glasgow, Sch Chem, WestCHEM, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Zaragoza, CSIC, ICMA, Campus Rio Ebro,Maria de Luna 3, Zaragoza 50018, Spain
[4] Univ Manchester, Natl EPR Ctr, Oxford Rd, Manchester M13 9PL, Lancs, England
[5] Univ Glasgow, CMVLS, Ctr Cell Engn, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
IRON-OXIDE NANOPARTICLES; DUAL-MODAL MRI; THERMAL-DECOMPOSITION; CONTRAST AGENTS; GD; SHAPE; T-1;
D O I
10.1039/c6ra18095g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An iron and gadolinium-containing bimetallic polynuclear complex was used as a single source precursor in the synthesis of gadolinium-doped magnetite nanoparticles (Gd:Fe3O4). The synthesis produces well defined octahedral particles (12.6 +/- 2.6 nm diameter) with a gadolinium content in the region of 2 mol%. The nanoparticles showed a value of the specific absorption rate of 3.7 +/- 0.6 W g(Fe)(-1) under low-amplitude radiofrequency magnetic field excitation, and moderate biocompatibility, suggesting that these particles are viable candidates for magnetic hyperthermia applications.
引用
收藏
页码:74500 / 74505
页数:6
相关论文
共 42 条
[1]   Nano-objects for Addressing the Control of Nanoparticle Arrangement and Performance in Magnetic Hyperthermia [J].
Andreu, Irene ;
Natividad, Eva ;
Solozabal, Laura ;
Roubeau, Olivier .
ACS NANO, 2015, 9 (02) :1408-1419
[2]   Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate [J].
Angermann, Andre ;
Toepfer, Joerg .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (15) :5123-5130
[3]   Bioinspired Synthesis and Characterization of Gadolinium-Labeled Magnetite Nanoparticles for Dual Contrast T1- and T2-Weighted Magnetic Resonance Imaging [J].
Bae, Ki Hyun ;
Kim, Young Beom ;
Lee, Yuhan ;
Hwang, JinYoung ;
Park, HyunWook ;
Park, Tae Gwan .
BIOCONJUGATE CHEMISTRY, 2010, 21 (03) :505-512
[4]   Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications [J].
Berry, CC .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (05) :543-547
[5]   Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization [J].
Carrey, J. ;
Mehdaoui, B. ;
Respaud, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[6]   Inhomogeneous composition of alloyed iron-platinum magnetic nanoparticles synthesized at low temperature [J].
Chen, Shu ;
MacLaren, Donald A. ;
Baker, Richard T. ;
Chapman, John N. ;
Lee, Stephen ;
Cole-Hamilton, David J. ;
Andre, Pascal .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (11) :3646-3654
[7]  
Cortajarena Aitziber L, 2014, Nanobiomedicine (Rij), V1, P2, DOI 10.5772/58841
[8]  
Douglas F. J., 2012, THESIS
[9]   Formation of octapod MnO nanoparticles with enhanced magnetic properties through kinetically-controlled thermal decomposition of polynuclear manganese complexes [J].
Douglas, Fraser J. ;
MacLaren, Donald A. ;
Tuna, Floriana ;
Holmes, William M. ;
Berry, Catherine C. ;
Murrie, Mark .
NANOSCALE, 2014, 6 (01) :172-176
[10]   A study of the role of the solvent during magnetite nanoparticle synthesis: tuning size, shape and self-assembly [J].
Douglas, Fraser J. ;
MacLaren, Donald A. ;
Murrie, Mark .
RSC ADVANCES, 2012, 2 (21) :8027-8035