Computational investigation of label free detection of biomolecules based on armchair graphene nanoribbon

被引:10
作者
Bagherzadeh-Nobari, S. [1 ]
Kalantarinejad, R. [2 ]
Elahi, S. M. [1 ]
Sanvito, S. [3 ,4 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran
[2] Minist Sci Res & Technol, Aerosp Res Inst, Tehran, Iran
[3] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[4] Trinity Coll Dublin, CRANN Inst, Dublin 2, Ireland
关键词
Graphene nanoribbon; Biosensor; Amino acid; Quantum transport; ELECTRONIC TRANSPORT; GAS; NANOTUBES; DYNAMICS; STATE;
D O I
10.1016/j.snb.2017.08.113
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose here an amino acid nanosensor based on a single armchair graphene nanoribbon (AGNR) connected to two gold electrodes. Using the non-equilibrium Green's function method for quantum transport together with density functional theory, we compute the electrical properties of the sensor before and after the adsorption of different amino acids on the AGNR. Our results show that there is a significant shift of the projected density of states and of the transmission function, T, upon adsorption with a distinct response depending on the specific amino acid. These results suggest that AGNRs may be employed as materials of choice in bio-sensorics. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:1276 / 1284
页数:9
相关论文
共 54 条
[1]  
Abadir G. B., 2008, 2008 8th IEEE Conference on Nanotechnology (NANO), P230, DOI 10.1109/NANO.2008.75
[2]   Bias-dependent amino-acid-induced conductance changes in short semi-metallic carbon nanotubes [J].
Abadir, G. B. ;
Walus, K. ;
Pulfrey, D. L. .
NANOTECHNOLOGY, 2010, 21 (01)
[3]   Silicene as a new potential DNA sequencing device [J].
Amorim, Rodrigo G. ;
Scheicher, Ralph H. .
NANOTECHNOLOGY, 2015, 26 (15)
[4]   Toward Multiprotein Nanoarrays Using Nanografting and DNA Directed Immobilization of Proteins [J].
Bano, Fouzia ;
Fruk, Ljiljana ;
Sanavio, Barbara ;
Glettenberg, Maximilian ;
Casalls, Loredana ;
Niemeyer, Christof M. ;
Scoles, Giacinto .
NANO LETTERS, 2009, 9 (07) :2614-2618
[5]   Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper [J].
Berahman, M. ;
Sheikhi, M. H. .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 219 :338-345
[6]   Nonequilibrium Green's function study of Pd4-cluster-functionalized carbon nanotubes as hydrogen sensors [J].
Cao, Chao ;
Kemper, A. F. ;
Agapito, Luis ;
Zhang, Jian-Wei ;
He, Yao ;
Rinzler, Andrew ;
Cheng, Hai-Ping ;
Zhang, X. -G. ;
Rocha, Alexandre Reily ;
Sanvito, Stefano .
PHYSICAL REVIEW B, 2009, 79 (07)
[7]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[8]   First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes [J].
Chen, X. ;
Rungger, I. ;
Pemmaraju, C. D. ;
Schwingenschloegl, U. ;
Sanvito, S. .
PHYSICAL REVIEW B, 2012, 85 (11)
[9]   Molecular-scale bio-sensing using armchair graphene [J].
Chowdhury, R. ;
Scarpa, F. ;
Adhikari, S. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
[10]   Electrical detection of nucleotides via nanopores in a hybrid graphene/h-BN sheet [J].
de Souza, Fabio A. L. ;
Amorim, Rodrigo G. ;
Scopel, Wanderla L. ;
Scheicher, Ralph H. .
NANOSCALE, 2017, 9 (06) :2207-2212