Multiplicity, regularity and lipschitz geometry of real analytic hypersurfaces

被引:2
作者
Sampaio, Jose Edson [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, Rua Campus Pici S-N,Bloco 914, BR-60440900 Fortaleza, CE, Brazil
关键词
SETS; SINGULARITIES; INVARIANCE; CONES;
D O I
10.1007/s11856-021-2250-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to studying the Lipschitz geometry of real analytic sets. We prove that the relative multiplicities are bi-Lipschitz invariant, Lipschitz regular analytic curves are C-1 and we give some counterexamples of some theorems that hold true in the complex case. Moreover, we prove that the multiplicity mod 2 of real analytic surfaces is invariant under bi-Lipschitz homeomorphisms and that the multiplicity mod 2 of real analytic hypersurfaces is invariant under image arc-analytic bi-Lipschitz homeomorphisms, which generalize some results proved by G. Valette. Finally, we prove the real version of Ephraim-Trotman's Theorem about the differentiable invariance of the multiplicity of real analytic hypersurfaces.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 33 条
[1]  
ACAMPO N, 1973, INDAG MATH, V35, P113
[2]  
[Anonymous], 2007, New Zealand Journal of Mathematics
[3]   LIPSCHITZ REGULAR COMPLEX ALGEBRAIC SETS ARE SMOOTH [J].
Birbrair, L. ;
Fernandes, A. ;
Le, D. T. ;
Sampaio, J. E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) :983-987
[4]  
Birbrair L, 2017, INDIANA U MATH J, V66, P547
[5]  
Chirka EM., 1989, Math. Appl., DOI DOI 10.1007/978-94-009-2366-9
[6]   Some classes of homeomorphisms that preserve multiplicity and tangent cones [J].
Edson Sampaio, J. .
PANORAMA OF SINGULARITIES, 2020, 742 :189-200
[7]   C1 PRESERVATION OF MULTIPLICITY [J].
EPHRAIM, R .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) :797-803
[8]   Multiplicity of analytic hypersurface singularities under bi-Lipschitz homeomorphisms [J].
Fernandes, A. ;
Edson Sampaio, J. .
JOURNAL OF TOPOLOGY, 2016, 9 (03) :927-933
[9]   On Lipschitz Rigidity of Complex Analytic Sets [J].
Fernandes, Alexandre ;
Sampaio, J. Edson .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) :706-718
[10]   Tangent Cones of Lipschitz Normally Embedded Sets Are Lipschitz Normally Embedded. Appendix by Anne Pichon and Walter D. Neumann [J].
Fernandes, Alexandre ;
Sampaio, J. Edson .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (15) :4880-4897