Battery Thermal Management Using Phase Change Material-Metal Foam Composite Materials at Various Environmental Temperatures

被引:12
|
作者
Barnes, Derek [1 ]
Li, Xianglin [1 ]
机构
[1] Univ Kansas, Dept Mech Engn, Lawrence, KS 66045 USA
关键词
rechargeable batteries; metal foam; phase change material; thermal management; environmental temperatures; batteries; LI-ION BATTERY; CONDUCTIVITY; SYSTEM; UNIFORMITY; PACKS;
D O I
10.1115/1.4045326
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This investigation into phase change material (PCM)-based passive thermal management systems was conducted via an experimental approach using 19.5 A h lithium iron phosphate cells with dimensions of (7.25 x 160 x 227) mm3. Trials were conducted at currents from 1 to 5C and environmental temperatures from 4 to 35 degrees C to simulate applications at which a Li-ion battery would be expected to perform. Based on comparisons, including an air-only control, the system consisting of PCM combined with five pores per inch (PPI) aluminum foam is the most effective at regulating average battery temperature and temperature gradient. During a 3C discharge trial at room temperature, the PCM-Al foam (5 PPI) system kept the average battery temperature and the maximum temperature difference below 28.1 and 5.2 degrees C, respectively, compared to the air-only control system which reached values of 48.0 and 17.2 degrees C, respectively. When analyzing data from trials at 4 and 35 degrees C, similar results are found with the PCM-Al foam systems being effective at thermal management. Thus, when compared to other systems, preliminary results show great promise in the future for the use of an PCM-Al foam passive thermal management system to effectively regulate the temperature of Li-ion batteries during use.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Thermal characteristics of a flame-retardant composite phase change material for battery thermal management
    Wang, Zhangzhou
    He, Yurong
    Cheng, Gong
    Tang, Tianqi
    APPLIED THERMAL ENGINEERING, 2024, 243
  • [22] Hybrid cooling based battery thermal management using composite phase change materials and forced convection
    El Idi, Mohamed Moussa
    Karkri, Mustapha
    Tankari, Mahamadou Abdou
    Vincent, Stephane
    JOURNAL OF ENERGY STORAGE, 2021, 41 (41):
  • [23] A novel flexible composite phase change material with enhanced toughness and shape stability for battery thermal management
    Deng, Qi
    Liu, Qun
    Nian, Yongle
    Zhao, Rui
    Cheng, Wenlong
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [24] An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations
    Lazrak, Amine
    Fourmigue, Jean-Francois
    Robin, Jean-Francois
    APPLIED THERMAL ENGINEERING, 2018, 128 : 20 - 32
  • [25] Battery thermal management model and structure optimization of porous composite phase change material
    Li, Yang
    Tao, Yubing
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (2-3): : 213 - 221
  • [26] Optimization of the internal fin in a phase-change-material module for battery thermal management
    Weng, Jingwen
    Ouyang, Dongxu
    Yang, Xiaoqing
    Chen, Mingyi
    Zhang, Guoqing
    Wang, Jian
    APPLIED THERMAL ENGINEERING, 2020, 167
  • [27] Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams
    Alipanah, Morteza
    Li, Xianglin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 1159 - 1168
  • [28] Evaluation and optimization of thermal exchange performance for a metal foam/phase change material composite integrated into a heat sink
    Errebii, Mohamed
    Mourid, Amina
    El Alami, Mustapha
    Yao, Yuanpeng
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [29] Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery
    Wang, Zichen
    Zhang, Zhuqian
    Jia, Li
    Yang, Lixin
    APPLIED THERMAL ENGINEERING, 2015, 78 : 428 - 436
  • [30] Thermal modeling of passive thermal management system with phase change material for LiFePO4 battery
    Cao Jianhua
    Gao Dawei
    Liu Jiexun
    Wei Jieyuan
    Lu Qingchun
    2012 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2012, : 436 - 440