Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics

被引:92
作者
Wheatle, Bill K. [1 ]
Lynd, Nathaniel A. [1 ]
Ganesan, Venkat [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
来源
ACS MACRO LETTERS | 2018年 / 7卷 / 10期
基金
美国国家科学基金会;
关键词
POLYETHER-BASED ELECTROLYTES; MOLECULAR-DYNAMICS; POLY(ETHYLENE OXIDE); TRANSFERENCE NUMBER; LITHIUM BATTERIES; BLOCK-COPOLYMERS; MD SIMULATIONS; LIQUIDS; CONDUCTIVITY; MECHANISMS;
D O I
10.1021/acsmacrolett.8b00594
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, we use computer simulations to demonstrate that there may be limits to which polymer polarity alone can be used to influence the ionic conductivity of salt-doped polymer electrolytes. Specifically, we use coarse-grained molecular dynamics simulations to probe the effect of the polarity of the polymer electrolyte upon ion mobilities and conductivities of dissolved salts. At low polymer polarities, increasing the polymer dielectric constant reduces ionic aggregation and the resultant correlated ionic motion, and increases the ionic conductivity. At higher polymer polarities, polymer-polymer and polymer ion interactions slows polymer segmental dynamics, leading to a reduction in the conductivity of the electrolyte. As a consequence, ionic conductivity achieves an optimum at an intermediate polymer polarity.
引用
收藏
页码:1149 / 1154
页数:11
相关论文
共 54 条
  • [1] Barteau K.P., 2015, Poly(Glycidyl Ether)-Based Battery Electrolytes: Correlating Polymer Properties to Ion Transport
  • [2] Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries
    Barteau, Katherine P.
    Wolffs, Martin
    Lynd, Nathaniel A.
    Fredrickson, Glenn H.
    Kramer, Edward J.
    Hawker, Craig J.
    [J]. MACROMOLECULES, 2013, 46 (22) : 8988 - 8994
  • [3] MD Simulations and experimental study of structure, dynamics, and thermodynamics of poly(ethylene oxide) and its oligomers
    Borodin, O
    Douglas, R
    Smith, GA
    Trouw, F
    Petrucci, S
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) : 6813 - 6823
  • [4] Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations
    Borodin, O
    Smith, GD
    [J]. MACROMOLECULES, 2006, 39 (04) : 1620 - 1629
  • [5] Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytes
    Borodin, O
    Smith, GD
    Douglas, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) : 6824 - 6837
  • [6] Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics
    Borodin, O
    Smith, GD
    Bandyopadhyaya, R
    Byutner, E
    [J]. MACROMOLECULES, 2003, 36 (20) : 7873 - 7883
  • [7] Molecular Dynamics Simulation and Pulsed-Field Gradient NMR Studies of Bis(fluorosulfonyl)imide (FSI) and Bis[(trifluoromethyl)sulfonyl]imide (TFSI)-Based Ionic Liquids
    Borodin, Oleg
    Gorecki, W.
    Smith, Grant D.
    Armand, Michel
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (20) : 6786 - 6798
  • [8] Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes
    Chintapalli, Mahati
    Timachova, Ksenia
    Olson, Kevin R.
    Mecham, Sue J.
    Devaux, Didier
    DeSimone, Joseph M.
    Balsara, Nitash P.
    [J]. MACROMOLECULES, 2016, 49 (09) : 3508 - 3515
  • [9] Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries
    Diederichsen, Kyle M.
    McShane, Eric J.
    McCloskey, Bryan D.
    [J]. ACS ENERGY LETTERS, 2017, 2 (11): : 2563 - 2575
  • [10] The Compensation Effect in the Vogel-Tammann-Fulcher (VTF) Equation for Polymer-Based Electrolytes
    Diederichsen, Kyle M.
    Buss, Hilda G.
    McCloskey, Bryan D.
    [J]. MACROMOLECULES, 2017, 50 (10) : 3832 - 3841