Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas

被引:29
作者
Yahya, Azwar Muhammad [1 ,2 ]
Hussain, Mohd Azlan [2 ]
Wahab, Ahmad Khairi Abdul [3 ]
机构
[1] Univ Syiah Kuala, Fac Engn, Dept Chem Engn, Banda Aceh 23111, Indonesia
[2] Univ Malaya, Fac Engn, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[3] Univ Malaya, Fac Engn, Biomed Engn Dept, Kuala Lumpur 50603, Malaysia
关键词
modeling; optimization; control; microbial electrolysis cell; biohydrogen; MEMBRANE FUEL-CELL; HYDROGEN-PRODUCTION; BIOGAS PRODUCTION; ELECTROCHEMICAL MODEL; ORGANIC-MATTER; SYSTEM; WASTES; METHANE;
D O I
10.1002/er.3273
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An integrated modeling, optimization, and control approach for the design of a microbial electrolysis cell (MEC) was studied in this paper. Initially, this study describes the improvement of the mathematical MEC model for hydrogen production from wastewater in a fed-batch reactor. The model, which was modified from an already existing model, is based on material balance with the integration of bioelectrochemical reactions describing the steady-state behavior of biomass growth, consumption of substrates, hydrogen production, and the effect of applied voltage on the performance of the MEC fed-batch reactor. Another goal of this work is to implement a suitable control strategy to optimize the production of biohydrogen gas by selecting the optimal current and applied voltage to the MEC. Various simulation tests involving multiple set-point changes, disturbance rejection, and noise effects were performed to evaluate the performance where the proposed proportional-integral-derivative control system was tuned with an adaptive gain technique and compared with the Ziegler-Nichols method. The simulation results show that optimal tuning can provide better control effect on the MEC system, where optimal H-2 gas production for the system was achieved. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:557 / 572
页数:16
相关论文
共 49 条
[1]  
Astrom K J., 2006, ISA - The Instrumentation, Systems and Automation Society
[2]   Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review [J].
Azwar, M. Y. ;
Hussain, M. A. ;
Abdul-Wahab, A. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 31 :158-173
[3]   Optimal Production of Biohydrogen Gas via Microbial Electrolysis Cells (MEC) in a Controlled Batch Reactor System [J].
Azwar, Yahya ;
Abdul-Wahab, Ahmad Khairi ;
Hussain, Mohamed Azlan .
ICHEAP-11: 11TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-4, 2013, 32 :727-732
[4]   Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells [J].
Chae, Kyu-Jung ;
Choi, Mi-Jin ;
Kim, Kyoung-Yeol ;
Ajayi, F. F. ;
Park, Woosin ;
Kim, Chang-Won ;
Kim, In S. .
BIORESOURCE TECHNOLOGY, 2010, 101 (14) :5350-5357
[5]   Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater [J].
Cusick, Roland D. ;
Bryan, Bill ;
Parker, Denny S. ;
Merrill, Matthew D. ;
Mehanna, Maha ;
Kiely, Patrick D. ;
Liu, Guangli ;
Logan, Bruce E. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (06) :2053-2063
[6]   Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell [J].
Dekker, Arjan ;
Ter Heijne, Annemiek ;
Saakes, Michel ;
Hamelers, Hubertus V. M. ;
Buisman, Cees J. N. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (23) :9038-9042
[7]   Life Cycle Assessment of High-Rate Anaerobic Treatment, Microbial Fuel Cells, and Microbial Electrolysis Cells [J].
Foley, Jeffrey M. ;
Rozendal, Rene A. ;
Hertle, Christopher K. ;
Lant, Paul A. ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (09) :3629-3637
[8]   Model-based control of fuel cells: (1) Regulatory control [J].
Golbert, J ;
Lewin, DR .
JOURNAL OF POWER SOURCES, 2004, 135 (1-2) :135-151
[9]   Model for biomass-based renewable hydrogen supply chain [J].
Gondal, Irfan Ahmad ;
Sahir, Mukhtar Hussain .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (10) :1151-1159
[10]   On the automatic tuning and adaptation of PID controllers [J].
Gyöngy, IJ ;
Clarke, DW .
CONTROL ENGINEERING PRACTICE, 2006, 14 (02) :149-163