Lie Symmetry and Exact Solution of the Time-Fractional Hirota-Satsuma Korteweg-de Vries System

被引:4
|
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ]
Mandal, H. [5 ]
Bira, B. [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] SRM Inst Sci & Technol, Dept Math, Chennai 603203, Tamil Nadu, India
关键词
VARIANT BOUSSINESQ EQUATIONS; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATION; SOLITON-SOLUTIONS; EXPLICIT; SERIES; ORDER;
D O I
10.1134/S106192082103002X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdelyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条
  • [41] An exact solution to the Korteweg-de Vries-Burgers equation
    Feng, ZS
    APPLIED MATHEMATICS LETTERS, 2005, 18 (07) : 733 - 737
  • [42] Lie symmetry scheme to the generalized Korteweg-de Vries equation with Riemann-Liouville fractional derivative
    Liu, Jian-Gen
    Guo, Xiu-Rong
    Gui, Lin-Lin
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [43] Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel
    Khan, Khalid
    Ali, Amir
    Irfan, Muhammad
    Khan, Zareen A.
    AIMS MATHEMATICS, 2023, 8 (01): : 792 - 814
  • [44] Numerical solution of time-fractional coupled Korteweg-de Vries and Klein-Gordon equations by local meshless method
    Khan, Muhammad Nawaz
    Ahmad, Imtiaz
    Akgul, Ali
    Ahmad, Hijaz
    Thounthong, Phatiphat
    PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (01):
  • [45] A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation
    Shen, Jinye
    Sun, Zhi-zhong
    Cao, Wanrong
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 752 - 765
  • [46] On explicit exact solutions of variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation
    Rajesh Kumar Gupta
    Jaskiran Kaur
    The European Physical Journal Plus, 134
  • [47] On explicit exact solutions of variable-coefficient time-fractional generalized fifth-order Korteweg-de Vries equation
    Gupta, Rajesh Kumar
    Kaur, Jaskiran
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [49] The Time-Fractional Coupled-Korteweg-de-Vries Equations
    Atangana, Abdon
    Secer, Aydin
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [50] EXACT N-SOLITON SOLUTION OF KORTEWEG-DE VRIES EQUATION
    WADATI, M
    TODA, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 32 (05) : 1403 - +