Lie Symmetry and Exact Solution of the Time-Fractional Hirota-Satsuma Korteweg-de Vries System

被引:4
|
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ]
Mandal, H. [5 ]
Bira, B. [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] SRM Inst Sci & Technol, Dept Math, Chennai 603203, Tamil Nadu, India
关键词
VARIANT BOUSSINESQ EQUATIONS; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATION; SOLITON-SOLUTIONS; EXPLICIT; SERIES; ORDER;
D O I
10.1134/S106192082103002X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdelyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条
  • [31] A numerical solution of time-fractional coupled Korteweg-de Vries equation by using spectral collection method
    Albuohimad, Basim
    Adibi, Hojatollah
    Kazem, Saeed
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1897 - 1905
  • [32] Symmetry analysis of the generalized space and time fractional Korteweg-de Vries equation
    Liu, Jian-Gen
    Yang, Xiao-Jun
    Feng, Yi-Ying
    Geng, Lu-Lu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (14)
  • [33] Lie symmetries, symmetry reductions and conservation laws of time fractional modified Korteweg-de Vries (mkdv) equation
    Akbulut, Arzu
    Tasan, Filiz
    CHAOS SOLITONS & FRACTALS, 2017, 100 : 1 - 6
  • [34] On exact solutions of a coupled Korteweg-de Vries system
    Yang, Xu-Dong
    Ruan, Hang-Yu
    Lou, Sen Yue
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 353 - 367
  • [35] Exact Solutions for a Coupled Korteweg-de Vries System
    Zuo, Da-Wei
    Jia, Hui-Xian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (11): : 1053 - 1058
  • [36] A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations
    Akinyemi, Lanre
    Iyiola, Olaniyi S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [37] A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves
    Sahoo, S.
    Ray, S. Saha
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 106 - 114
  • [38] Exact solutions of time fractional Korteweg-de Vries-Zakharov-Kuznetsov equation
    Unal, Sevil Culha
    Dascioglu, Aysegul
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 9557 - 9570
  • [39] Solution of time-fractional generalized Hirota-Satsuma coupled KdV equation by generalised differential transformation method
    Merdan, Mehmet
    Gokdogan, Ahmet
    Yildirim, Ahmet
    Mohyud-Din, Syed Tauseef
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2013, 23 (05) : 927 - 940
  • [40] Conservation laws and exact series solution of fractional-order Hirota-Satsuma-coupled Korteveg-de Vries system by symmetry analysis
    Gandhi, Hemant
    Tomar, Amit
    Singh, Dimple
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14356 - 14370