Lie Symmetry and Exact Solution of the Time-Fractional Hirota-Satsuma Korteweg-de Vries System

被引:4
|
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ]
Mandal, H. [5 ]
Bira, B. [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] SRM Inst Sci & Technol, Dept Math, Chennai 603203, Tamil Nadu, India
关键词
VARIANT BOUSSINESQ EQUATIONS; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATION; SOLITON-SOLUTIONS; EXPLICIT; SERIES; ORDER;
D O I
10.1134/S106192082103002X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdelyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条