Lie Symmetry and Exact Solution of the Time-Fractional Hirota-Satsuma Korteweg-de Vries System

被引:4
|
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ]
Mandal, H. [5 ]
Bira, B. [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] SRM Inst Sci & Technol, Dept Math, Chennai 603203, Tamil Nadu, India
关键词
VARIANT BOUSSINESQ EQUATIONS; TRAVELING-WAVE SOLUTIONS; DIFFERENTIAL-EQUATION; SOLITON-SOLUTIONS; EXPLICIT; SERIES; ORDER;
D O I
10.1134/S106192082103002X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdelyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条
  • [11] HIGHER DIMENSIONAL INTEGRABLE DEFORMATIONS OF A GENERALIZED HIROTA-SATSUMA COUPLED KORTEWEG-DE VRIES SYSTEM
    Cheng, Xiaoyu
    Huang, Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [12] Nonlocal symmetries of the Hirota-Satsuma coupled Korteweg-de Vries system and their applications: Exact interaction solutions and integrable hierarchy
    Chen, Junchao
    Xin, Xiangpeng
    Chen, Yong
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
  • [13] Numerical solution of the generalized Hirota-Satsuma coupled Korteweg-de Vries equation by Fourier Pseudospectral method
    Rashid, Abdur
    Lu, Dianchen
    Ismail, Ahmad Izani Md.
    Abbas, Muhammad
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (08) : 1412 - 1423
  • [14] Fuzzy uncertainty modeling of generalized Hirota-Satsuma coupled Korteweg-de Vries equation
    Vana, Rambabu
    Karunakar, Perumandla
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [15] Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg-de Vries equation
    Hashemi, Mir Sajjad
    Haji-Badali, Ali
    Alizadeh, Farzaneh
    Inc, Mustafa
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (09)
  • [16] THE EXACT TRAVELING WAVE SOLUTIONS OF LOCAL FRACTIONAL GENERALIZED HIROTA-SATSUMA COUPLED KORTEWEG-DE VRIES EQUATIONS ARISING IN INTERACTION OF LONG WAVES
    Zhang, Zong-Guo
    Chen, Su-Ling
    Liu, Quan-Sheng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (04)
  • [17] Bilinear forms and solitonic stability for a variable-coefficient Hirota-Satsuma coupled Korteweg-de Vries system in a liquid
    Chen, Yu-Qi
    Tian, Bo
    Wei, Cheng-Cheng
    Yang, Dan-Yu
    PHYSICS LETTERS A, 2023, 477
  • [18] An Efficient Computational Technique for Fractional Model of Generalized Hirota-Satsuma-Coupled Korteweg-de Vries and Coupled Modified Korteweg-de Vries Equations
    Veeresha, P.
    Prakasha, D. G.
    Kumar, Devendra
    Baleanu, Dumitru
    Singh, Jagdev
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (07):
  • [19] ANALYTICAL APPROACH TO A GENERALIZED HIROTA-SATSUMA COUPLED KORTEWEG-DE VRIES EQUATION BY MODIFIED VARIATIONAL ITERATION METHOD
    Lu, Jun-Feng
    Ma, Li
    THERMAL SCIENCE, 2016, 20 (03): : 885 - 888
  • [20] On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method
    Saad, K. M.
    AL-Shareef, Eman H. F.
    Alomari, A. K.
    Baleanu, Dumitru
    Gomez-Aguilar, J. F.
    CHINESE JOURNAL OF PHYSICS, 2020, 63 : 149 - 162