Permutation and complete permutation polynomials

被引:32
作者
Bassalygo, L. A. [1 ]
Zinoviev, V. A. [1 ]
机构
[1] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Moscow 127994, Russia
基金
俄罗斯基础研究基金会;
关键词
Finite field; Permutation polynomial; Complete permutation polynomial; Exponential sum; FINITE-FIELDS;
D O I
10.1016/j.ffa.2014.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polynomials of type x(q+2) + bx over the field Fe and of type x(q2+q+2) + bx over Fe where q = p(m) > 2 is a power of a prime p are considered. All cases when these polynomials are permutation polynomials are classified. Therefore, all cases when the polynomials b(-1)x(q+2) over F-q2 and b(-1)x(q2+q+2) over Fe are the complete permutation polynomials are enumerated. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 11 条
  • [1] Bassalygo L.A., 2014, P 14 INT WORKSH ALG, P57
  • [2] Cubic monomial bent functions:: A subclass of M
    Charpin, Pascale
    Kyureghyan, Gohar M.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 650 - 665
  • [3] Chou W.-S., 1990, THESIS PENNSYLVANIA
  • [4] Lidl R., 1983, ENCY MATH APPL, V20
  • [5] Mullen G.L., 1993, LECTURE NOTES PURE A, V141, P131
  • [6] A note on complete polynomials over finite fields and their applications in cryptography
    Muratovic-Ribic, Amela
    Pasalic, Enes
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 306 - 315
  • [7] COMPLETE MAPPINGS OF FINITE-FIELDS
    NIEDERREITER, H
    ROBINSON, KH
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 33 (OCT): : 197 - 212
  • [8] Sarkar S., 2012, P WAIFI, P236
  • [9] Several classes of complete permutation polynomials
    Tu, Ziran
    Zeng, Xiangyong
    Hu, Lei
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 182 - 193
  • [10] Vinogradov I.M., 1972, BASICS NUMBER THEORY