Permutation and complete permutation polynomials

被引:34
作者
Bassalygo, L. A. [1 ]
Zinoviev, V. A. [1 ]
机构
[1] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Moscow 127994, Russia
基金
俄罗斯基础研究基金会;
关键词
Finite field; Permutation polynomial; Complete permutation polynomial; Exponential sum; FINITE-FIELDS;
D O I
10.1016/j.ffa.2014.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polynomials of type x(q+2) + bx over the field Fe and of type x(q2+q+2) + bx over Fe where q = p(m) > 2 is a power of a prime p are considered. All cases when these polynomials are permutation polynomials are classified. Therefore, all cases when the polynomials b(-1)x(q+2) over F-q2 and b(-1)x(q2+q+2) over Fe are the complete permutation polynomials are enumerated. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 11 条
[1]  
Bassalygo L.A., 2014, P 14 INT WORKSH ALG, P57
[2]   Cubic monomial bent functions:: A subclass of M [J].
Charpin, Pascale ;
Kyureghyan, Gohar M. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) :650-665
[3]  
Chou W.-S., 1990, THESIS PENNSYLVANIA
[4]  
Lidl R., 1983, ENCY MATH APPL, V20
[5]  
Mullen G.L., 1993, LECTURE NOTES PURE A, V141, P131
[6]   A note on complete polynomials over finite fields and their applications in cryptography [J].
Muratovic-Ribic, Amela ;
Pasalic, Enes .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 :306-315
[7]   COMPLETE MAPPINGS OF FINITE-FIELDS [J].
NIEDERREITER, H ;
ROBINSON, KH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 33 (OCT) :197-212
[8]  
Sarkar S., 2012, P WAIFI, P236
[9]   Several classes of complete permutation polynomials [J].
Tu, Ziran ;
Zeng, Xiangyong ;
Hu, Lei .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 :182-193
[10]  
Vinogradov I.M., 1972, BASICS NUMBER THEORY