Deep Learning for Black-Box Modeling of Audio Effects

被引:22
作者
Ramirez, Marco A. Martinez [1 ]
Benetos, Emmanouil [1 ]
Reiss, Joshua D. [1 ]
机构
[1] Queen Mary Univ London, Ctr Digital Mus, Mile End Rd, London E1 4NS, England
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
black-box modeling; nonlinear; time-varying; audio effects; deep learning; tube amplifier; transistor-based limiter; Leslie speaker;
D O I
10.3390/app10020638
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Virtual analog modeling of audio effects consists of emulating the sound of an audio processor reference device. This digital simulation is normally done by designing mathematical models of these systems. It is often difficult because it seeks to accurately model all components within the effect unit, which usually contains various nonlinearities and time-varying components. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. Recently, deep neural networks have been explored as black-box modeling strategies to solve this task, i.e., by using only input-output measurements. We analyse different state-of-the-art deep learning models based on convolutional and recurrent neural networks, feedforward WaveNet architectures and we also introduce a new model based on the combination of the aforementioned models. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Thus, we show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating woofer of a Leslie speaker cabinet.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Adaptive Neuro-Fuzzy Black-Box Modeling Based on Instrumental Variable Evolving Algorithm
    Rocha O.
    Serra G.
    Serra, Ginalber (ginalber@ifma.edu.br), 1600, Springer Science and Business Media, LLC (28): : 50 - 67
  • [42] Echo state network-based black-box modeling and prediction of ship maneuvering motion
    Liu, Si-Yu
    Chen, Chang-Zhe
    Zou, Lu
    Zou, Zao-Jian
    He, Yu
    OCEAN ENGINEERING, 2024, 312
  • [43] Simplified measurement-based black-box modeling of distribution transformers using transfer functions
    Papadopoulos, Theofilos A.
    Chrysochos, Andreas I.
    Nousdilis, Angelos I.
    Papagiannis, Grigoris K.
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 121 : 77 - 88
  • [44] Research on Black-Box Modeling Prediction of USV Maneuvering Based on SSA-WLS-SVM
    Song, Lifei
    Hao, Le
    Tao, Hao
    Xu, Chuanyi
    Guo, Rong
    Li, Yi
    Yao, Jianxi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (02)
  • [45] Physical Black-Box Adversarial Attacks Through Transformations
    Jiang, Wenbo
    Li, Hongwei
    Xu, Guowen
    Zhang, Tianwei
    Lu, Rongxing
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 964 - 974
  • [46] Adaptive hyperparameter optimization for black-box adversarial attack
    Zhenyu Guan
    Lixin Zhang
    Bohan Huang
    Bihe Zhao
    Song Bian
    International Journal of Information Security, 2023, 22 : 1765 - 1779
  • [47] Black-Box Adversarial Attack via Overlapped Shapes
    Williams, Phoenix
    Li, Ke
    Min, Geyong
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 467 - 468
  • [48] An Effective Way to Boost Black-Box Adversarial Attack
    Feng, Xinjie
    Yao, Hongxun
    Che, Wenbin
    Zhang, Shengping
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 393 - 404
  • [49] A review of black-box adversarial attacks on image classification
    Zhu, Yanfei
    Zhao, Yaochi
    Hu, Zhuhua
    Luo, Tan
    He, Like
    NEUROCOMPUTING, 2024, 610
  • [50] Adaptive hyperparameter optimization for black-box adversarial attack
    Guan, Zhenyu
    Zhang, Lixin
    Huang, Bohan
    Zhao, Bihe
    Bian, Song
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1765 - 1779