GPU based real-time instrument tracking with three-dimensional ultrasound

被引:91
作者
Novotny, Paul M.
Stoll, Jeff A.
Vasilyev, Nikolay V.
del Nido, Pedro J.
Dupont, Pierre E.
Zickler, Todd E.
Howe, Robert D.
机构
[1] Harvard Univ, Sch Med, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Boston Univ, Dept Aerosp & Mech Engn, Boston, MA 02215 USA
[3] Childrens Hosp, Dept Cardiovasc Surg, Boston, MA 02115 USA
关键词
3D ultrasound; cardiac surgery; GPU; instrument tracking;
D O I
10.1016/j.media.2007.06.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time three-dimensional ultrasound enables new, intracardiac surgical procedures, but the distorted appearance of instruments in ultrasound poses a challenge to surgeons. This paper presents a detection technique that identifies the position of the instrument within the ultrasound volume. The algorithm uses a form of the generalized Radon transform to search for long straight objects in the ultrasound image, a feature characteristic of instruments and not found in cardiac tissue. When combined with passive markers placed on the instrument shaft, the full position and orientation of the instrument is found in 3D space. This detection technique is amenable to rapid execution on the current generation of personal computer graphics processor units (GPU). Our GPU implementation detected a surgical instrument in 31 ms, sufficient for real-time tracking at the 25 volumes per second rate of the ultrasound machine. A water tank experiment found instrument orientation errors of 1.1 degrees and tip position errors of less than 1.8 mm. Finally, an in vivo study demonstrated successful instrument tracking inside a beating porcine heart. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:458 / 464
页数:7
相关论文
共 22 条
  • [1] Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass
    Bellinger, DC
    Wypij, D
    Kuban, KCK
    Rappaport, LA
    Hickey, PR
    Wernovsky, G
    Jonas, RA
    Newburger, JW
    [J]. CIRCULATION, 1999, 100 (05) : 526 - 532
  • [2] Cannon Jeremy W, 2003, Comput Aided Surg, V8, P82, DOI 10.3109/10929080309146042
  • [3] A real-time biopsy needle segmentation technique using Hough Transform
    Ding, MY
    Fenster, A
    [J]. MEDICAL PHYSICS, 2003, 30 (08) : 2222 - 2233
  • [4] An algorithm for automatic needle localization in ultrasound-guided breast biopsies
    Draper, KJ
    Blake, CC
    Gowman, L
    Downey, DB
    Fenster, A
    [J]. MEDICAL PHYSICS, 2000, 27 (08) : 1971 - 1979
  • [5] Producing diffuse ultrasound reflections from medical instruments using a quadratic residue diffuser
    Huang, Jinlan
    Dupont, Pierre E.
    Undurti, Aditya
    Triedman, John K.
    Cleveland, Robin O.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2006, 32 (05) : 721 - 727
  • [6] Human-machine collaborative systems for microsurgical applications
    Kragic, D
    Marayong, P
    Li, M
    Okamura, AM
    Hager, GA
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2005, 24 (09) : 731 - 741
  • [7] Acceleration techniques for GPU-based volume rendering
    Krüger, J
    Westermann, R
    [J]. IEEE VISUALIZATION 2003, PROCEEDINGS, 2003, : 287 - 292
  • [8] An efficient calibration method for freehand 3-D ultrasound imaging systems
    Leotta, DF
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2004, 30 (07) : 999 - 1008
  • [9] Probe calibration for freehand 3-D ultrasound
    Lindseth, F
    Tangen, GA
    Lango, T
    Bang, J
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (11) : 1607 - 1623
  • [10] The generalized Radon transform: Sampling, accuracy and memory considerations
    Luengo Hendriks, CL
    van Ginkel, M
    Verbeek, PW
    van Vliet, LJ
    [J]. PATTERN RECOGNITION, 2005, 38 (12) : 2494 - 2505