Streaming Analytics in Edge-Cloud Environment for Logistics Processes

被引:3
|
作者
von Stietencron, Moritz [1 ]
Lewandowski, Marco [1 ]
Lepenioti, Katerina [2 ]
Bousdekis, Alexandros [2 ]
Hribernik, Karl [1 ]
Apostolou, Dimitris [2 ,3 ]
Mentzas, Gregoris [2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Bremen, Germany
[2] Natl Tech Univ Athens NTUA, Inst Commun & Comp Syst ICCS, Informat Management Unit IMU, Athens, Greece
[3] Univ Piraeus, Dept Informat, Piraeus, Greece
基金
欧盟地平线“2020”;
关键词
Data analytics; Machine learning; Predictive maintenance; Aviation;
D O I
10.1007/978-3-030-57997-5_29
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recent advancements in Internet of Things (IoT) technology and the increasing amount of sensing devices that collect and/or generate massive sensor data streams enhances the use of streaming analytics for providing timely and meaningful insights. The current paper proposes a framework for supporting streaming analytics in edge-cloud computational environment for logistics operations in order to maximize the potential value of IoT technology. The proposed framework is demonstrated in a real-life scenario of a large transportation asset in the aviation sector.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [41] An Edge-Fog-Cloud Architecture of Streaming Analytics for Internet of Things Applications
    Cao, Hung
    Wachowicz, Monica
    SENSORS, 2019, 19 (16)
  • [42] MEnSuS: An efficient scheme for energy management with sustainability of cloud data centers in edge-cloud environment
    Aujla, Gagangeet Singh
    Kumar, Neeraj
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 : 1279 - 1300
  • [43] Integrating Serverless and DRL for Infrastructure Management in Streaming Data Processing across Edge-Cloud Continuum
    Dehury, Chinmaya Kumar
    Srirama, Satish Narayana
    2024 IEEE 44TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS, ICDCS 2024, 2024, : 93 - 101
  • [44] SmartEye: An Open Source Framework for Real-Time Video Analytics with Edge-Cloud Collaboration
    Wang, Xuezhi
    Gao, Guanyu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3767 - 3770
  • [45] DRL-Based Distributed Task Offloading Framework in Edge-Cloud Environment
    Nashaat, Heba
    Hashem, Walaa
    Rizk, Rawya
    Attia, Radwa
    IEEE ACCESS, 2024, 12 : 33580 - 33594
  • [46] Profit maximization for security-aware task offloading in edge-cloud environment
    Li, Zhongjin
    Chang, Victor
    Hu, Haiyang
    Yu, Dongjin
    Ge, Jidong
    Huang, Binbin
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 157 : 43 - 55
  • [47] Efficient resource scaling based on load fluctuation in edge-cloud computing environment
    Chunlin Li
    Jingpan Bai
    Youlong Luo
    The Journal of Supercomputing, 2020, 76 : 6994 - 7025
  • [48] VaBUS: Edge-Cloud Real-Time Video Analytics via Background Understanding and Subtraction
    Wang, Hanling
    Li, Qing
    Sun, Heyang
    Chen, Zuozhou
    Hao, Yingqian
    Peng, Junkun
    Yuan, Zhenhui
    Fu, Junsheng
    Jiang, Yong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (01) : 90 - 106
  • [49] Croesus: Multi-Stage Processing and Transactions for Video-Analytics in Edge-Cloud Systems
    Gazzaz, Samaa
    Chakraborty, Vishal
    Nawab, Faisal
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1463 - 1476
  • [50] IoT Microservice Deployment in Edge-Cloud Hybrid Environment Using Reinforcement Learning
    Chen, Lulu
    Xu, Yangchuan
    Lu, Zhihui
    Wu, Jie
    Gai, Keke
    Hung, Patrick C. K.
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16): : 12610 - 12622