Streaming Analytics in Edge-Cloud Environment for Logistics Processes

被引:3
|
作者
von Stietencron, Moritz [1 ]
Lewandowski, Marco [1 ]
Lepenioti, Katerina [2 ]
Bousdekis, Alexandros [2 ]
Hribernik, Karl [1 ]
Apostolou, Dimitris [2 ,3 ]
Mentzas, Gregoris [2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Bremen, Germany
[2] Natl Tech Univ Athens NTUA, Inst Commun & Comp Syst ICCS, Informat Management Unit IMU, Athens, Greece
[3] Univ Piraeus, Dept Informat, Piraeus, Greece
基金
欧盟地平线“2020”;
关键词
Data analytics; Machine learning; Predictive maintenance; Aviation;
D O I
10.1007/978-3-030-57997-5_29
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recent advancements in Internet of Things (IoT) technology and the increasing amount of sensing devices that collect and/or generate massive sensor data streams enhances the use of streaming analytics for providing timely and meaningful insights. The current paper proposes a framework for supporting streaming analytics in edge-cloud computational environment for logistics operations in order to maximize the potential value of IoT technology. The proposed framework is demonstrated in a real-life scenario of a large transportation asset in the aviation sector.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [1] Towards logistics 4.0: an edge-cloud software framework for big data analytics in logistics processes
    von Stietencron, Moritz
    Hribernik, Karl
    Lepenioti, Katerina
    Bousdekis, Alexandros
    Lewandowski, Marco
    Apostolou, Dimitris
    Mentzas, Gregoris
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2022, 60 (19) : 5994 - 6012
  • [2] Collaborative Edge-Cloud and Edge-Edge Video Analytics
    Gazzaz, Samaa
    Nawab, Faisal
    PROCEEDINGS OF THE 2019 TENTH ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC '19), 2019, : 484 - 484
  • [3] Efficient RDF Streaming for the Edge-Cloud Continuum
    Sowinski, Piotr
    Wasielewska-Michniewska, Katarzyna
    Ganzha, Maria
    Pawlowski, Wieslaw
    Szmeja, Pawel
    Paprzycki, Marcin
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,
  • [4] Edge-Cloud Collaborative Streaming Video Analytics With Multi-Agent Deep Reinforcement Learning
    Qian, Bin
    Xuan, Yubo
    Wu, Di
    Wen, Zhenyu
    Yang, Renyu
    He, Shibo
    Chen, Jiming
    Ranjan, Rajiv
    IEEE NETWORK, 2025, 39 (01): : 165 - 173
  • [5] Managing latency in edge-cloud environment
    Bulej, Lubomir
    Bures, Tomas
    Filandr, Adam
    Hnetynka, Petr
    Hnetynkova, Iveta
    Pacovsky, Jan
    Sandor, Gabor
    Gerostathopoulos, Ilias
    JOURNAL OF SYSTEMS AND SOFTWARE, 2021, 172 (172)
  • [6] Optimizing Edge-Cloud Synergy for Big Data Analytics
    Singh, Raghubir
    Kumar, Neeraj
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 123 - 128
  • [7] Enabling Edge-Cloud Video Analytics for Robotics Applications
    Wang, Yiding
    Wang, Weiyan
    Liu, Duowen
    Jin, Xin
    Jiang, Junchen
    Chen, Kai
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2021), 2021,
  • [8] Enabling Edge-Cloud Video Analytics for Robotics Applications
    Wang, Yiding
    Wang, Weiyan
    Liu, Duowen
    Jin, Xin
    Jiang, Junchen
    Chen, Kai
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (02) : 1500 - 1513
  • [9] Optimized resource allocation in edge-cloud environment
    Randriamasinoro, Njakarison Menja
    Nguyen, Kim Khoa
    Cheriet, Mohamed
    12TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON2018), 2018, : 816 - 823
  • [10] Guaranteed Latency Applications in Edge-Cloud Environment
    Hnetynka, Petr
    Kubat, Petr
    Al-Ali, Rima
    Gerostathopoulos, Ilias
    Khalyeyev, Danylo
    ECSA 2018: PROCEEDINGS OF THE 12TH EUROPEAN CONFERENCE ON SOFTWARE ARCHITECTURE: COMPANION PROCEEDINGS, 2018,