Some identities involving multiplicative semiderivations on ideals

被引:0
作者
Golbasi, Oznur [1 ]
Bedir, Zeliha [1 ]
机构
[1] Cumhuriyet Univ, Fac Sci, Dept Math, Sivas, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2021年 / 50卷 / 04期
关键词
prime rings; semiderivation; multiplicative semiderivation; DERIVATIONS; PRIME;
D O I
10.15672/hujms.650600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring and I be a nonzero ideal of R. A mapping d : R -> R is called a multiplicative semiderivation if there exists a function g : R -> R such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (ii) d(g(x)) = g(d(x)) hold for all x, y is an element of R. In the present paper, we shall prove that [x, d(x)] = 0, for all x is an element of I if any of the followings holds: i) d(xy) +/- xy is an element of Z, H) d(xy) +/- yx is an element of Z, Hi) d(x)d(y) +/- xy is an element of Z, iv) d(xy) +/- d(x)d(y) is an element of Z, viii) d(xy) +/- d(y)d(x) is an element of Z, for all x, y is an element of I. Also, we show that R must be commutative if d(I) subset of Z.
引用
收藏
页码:963 / 969
页数:7
相关论文
共 11 条