Selecting inactive materials with low electrolyte reactivity for lithium-ion cells

被引:9
作者
Yan, Zilai [1 ]
Obrovac, M. N. [1 ,2 ]
机构
[1] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Inactive materials; Electrolyte reactivity; Cell fade; SEI formation; OXIDATION RESISTANCE; CURRENT COLLECTORS; INTERFACE; BATTERIES; GRAPHITE;
D O I
10.1016/j.jpowsour.2018.07.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrolyte reactivity on Cu, Ni, 304 stainless steel, Ti, TiN, Mo, and Fe, was investigated at the negative electrode in VC and non-VC containing electrolytes. TiN and Ti were found to have the lowest cathodic electrolyte reactivity in both VC and non-VC containing electrolytes, with a reactivity less than graphite. In contrast, inactive materials commonly used in Li-ion batteries at the negative electrodes, Cu (current collector) and Ni (tabs), have high irreversible capacities, high electrolyte reaction rates (2-3.5 times graphite) and high impedance growth. These studies show that the current materials widely in use today at the negative electrode could be contributing to fade and impedance growth in Li-ion batteries. The use of more inert materials, such as Ti or TiN, may result in an increase of Li-ion battery cycle life.
引用
收藏
页码:374 / 381
页数:8
相关论文
共 23 条
  • [1] The formation and stability of the solid electrolyte interface on the graphite anode
    Agubra, Victor A.
    Fergus, Jeffrey W.
    [J]. JOURNAL OF POWER SOURCES, 2014, 268 : 153 - 162
  • [2] Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms
    Burns, J. C.
    Krause, L. J.
    Le, Dinh-Ba
    Jensen, L. D.
    Smith, A. J.
    Xiong, Deijun
    Dahn, J. R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) : A1417 - A1422
  • [3] Electrochemically stable cathode current collectors for rechargeable magnesium batteries
    Cheng, Yingwen
    Liu, Tianbiao
    Shao, Yuyan
    Engelhard, Mark H.
    Liu, Jun
    Li, Guosheng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) : 2473 - 2477
  • [4] Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles
    Cho, SJ
    Idrobo, JC
    Olamit, J
    Liu, K
    Browning, ND
    Kauzlarich, SM
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (12) : 3181 - 3186
  • [5] Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges
    Du, Pingwu
    Eisenberg, Richard
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) : 6012 - 6021
  • [6] INFLUENCE OF SILICON ADDITIONS ON THE OXIDATION RESISTANCE OF A STAINLESS-STEEL
    EVANS, HE
    HILTON, DA
    HOLM, RA
    WEBSTER, SJ
    [J]. OXIDATION OF METALS, 1983, 19 (1-2): : 1 - 18
  • [7] Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
    Gauthier, Magali
    Carney, Thomas J.
    Grimaud, Alexis
    Giordano, Livia
    Pour, Nir
    Chang, Hao-Hsun
    Fenning, David P.
    Lux, Simon F.
    Paschos, Odysseas
    Bauer, Christoph
    Magia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Shao-Horn, Yang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22): : 4653 - 4672
  • [8] Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst
    Gojkovic, SL
    Vidakovic, TR
    Durovic, DR
    [J]. ELECTROCHIMICA ACTA, 2003, 48 (24) : 3607 - 3614
  • [9] Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
    Gong, Kuanping
    Du, Feng
    Xia, Zhenhai
    Durstock, Michael
    Dai, Liming
    [J]. SCIENCE, 2009, 323 (5915) : 760 - 764
  • [10] Phenolic Resin as an Inexpensive High Performance Binder for Li-Ion Battery Alloy Negative Electrodes
    Hatchard, T. D.
    Bissonnette, P.
    Obrovac, M. N.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : A2035 - A2039