Automatic target recognition using deep convolutional neural networks

被引:1
|
作者
Nasrabadi, Nasser M. [1 ]
Kazemi, Hadi [1 ]
Iranmanesh, Mehdi [1 ]
机构
[1] West Virginia Univ, Morgantown, WV 26506 USA
来源
AUTOMATIC TARGET RECOGNITION XXVIII | 2018年 / 10648卷
关键词
Automatic Target Recognition (ATR); target detector; deep learning; Deep Convolutional Neural Network (DCNN); FLIR imagery; IMAGERY; MODEL; CLASSIFICATION; TRACKING;
D O I
10.1117/12.2304643
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new Automatic Target Recognition (ATR) system, based on Deep Convolutional Neural Network (DCNN), to detect the targets in Forward Looking Infrared (FLIR) scenes and recognize their classes. In our proposed ATR framework, a fully convolutional network (FCN) is trained to map the input FLIR imagery data to a fixed stride correspondingly-sized target score map. The potential targets are identified by applying a threshold on the target score map. Finally, corresponding regions centered at these target points are fed to a DCNN to classify them into different target types while at the same time rejecting the false alarms. The proposed architecture achieves a significantly better performance in comparison with that of the state-of-the-art methods on two large FUR image databases.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Automatic driver distraction detection using deep convolutional neural networks
    Hossain, Md. Uzzol
    Rahman, Md. Ataur
    Islam, Md. Manowarul
    Akhter, Arnisha
    Uddin, Md. Ashraf
    Paul, Bikash Kumar
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 14
  • [22] Speech Emotion Recognition and Deep Learning: An Extensive Validation Using Convolutional Neural Networks
    Ri, Francesco Ardan Dal
    Ciardi, Fabio Cifariello
    Conci, Nicola
    IEEE ACCESS, 2023, 11 : 116638 - 116649
  • [23] Handwritten Tifinagh Characters Recognition Using Deep Convolutional Neural Networks
    Mohamed Benaddy
    Othmane El Meslouhi
    Youssef Es-saady
    Mustapha Kardouchi
    Sensing and Imaging, 2019, 20
  • [24] Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks
    Tao, Xian
    Zhang, Dapeng
    Ma, Wenzhi
    Liu, Xilong
    Xu, De
    APPLIED SCIENCES-BASEL, 2018, 8 (09):
  • [25] Domain adaptation for ear recognition using deep convolutional neural networks
    Eyiokur, Fevziye Irem
    Yaman, Dogucan
    Ekenel, Hazim Kemal
    IET BIOMETRICS, 2018, 7 (03) : 199 - 206
  • [26] Risk Factor Recognition for Automatic Safety Management in Construction Sites Using Fast Deep Convolutional Neural Networks
    Park, Jeongeun
    Lee, Hyunjae
    Kim, Ha Young
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [27] Target Recognition in Infrared Circumferential Scanning System via Deep Convolutional Neural Networks
    Chen, Gao
    Wang, Weihua
    SENSORS, 2020, 20 (07)
  • [28] Handwritten Tifinagh Characters Recognition Using Deep Convolutional Neural Networks
    Benaddy, Mohamed
    El Meslouhi, Othmane
    Es-saady, Youssef
    Kardouchi, Mustapha
    SENSING AND IMAGING, 2019, 20 (1):
  • [29] Automatic target recognition for naval traffic control using neural networks
    Pasquariello, G
    Satalino, G
    la Forgia, V
    Spilotros, F
    IMAGE AND VISION COMPUTING, 1998, 16 (02) : 67 - 73
  • [30] Automatic triage of twelve-lead electrocardiograms using deep convolutional neural networks: a first implementation study
    van de Leur, Rutger R.
    van Sleuwen, Meike T. G. M.
    Zwetsloot, Peter-Paul M.
    van der Harst, Pim
    Doevendans, Pieter A.
    Hassink, Rutger J.
    van Es, Rene
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (01): : 89 - 96