Automatic target recognition using deep convolutional neural networks

被引:1
|
作者
Nasrabadi, Nasser M. [1 ]
Kazemi, Hadi [1 ]
Iranmanesh, Mehdi [1 ]
机构
[1] West Virginia Univ, Morgantown, WV 26506 USA
来源
AUTOMATIC TARGET RECOGNITION XXVIII | 2018年 / 10648卷
关键词
Automatic Target Recognition (ATR); target detector; deep learning; Deep Convolutional Neural Network (DCNN); FLIR imagery; IMAGERY; MODEL; CLASSIFICATION; TRACKING;
D O I
10.1117/12.2304643
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new Automatic Target Recognition (ATR) system, based on Deep Convolutional Neural Network (DCNN), to detect the targets in Forward Looking Infrared (FLIR) scenes and recognize their classes. In our proposed ATR framework, a fully convolutional network (FCN) is trained to map the input FLIR imagery data to a fixed stride correspondingly-sized target score map. The potential targets are identified by applying a threshold on the target score map. Finally, corresponding regions centered at these target points are fed to a DCNN to classify them into different target types while at the same time rejecting the false alarms. The proposed architecture achieves a significantly better performance in comparison with that of the state-of-the-art methods on two large FUR image databases.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] DeepTarget: An Automatic Target Recognition Using Deep Convolutional Neural Networks
    Nasrabadi, Nasser M.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (06) : 2687 - 2697
  • [2] SAR Automatic Target Recognition Based on Deep Convolutional Neural Networks
    Zhan, Rong-hui
    Tian, Zhuang-zhuang
    Hu, Jie-min
    Zhang, Jun
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNIQUES AND APPLICATIONS, AITA 2016, 2016, : 170 - 178
  • [3] Automatic target recognition using neural networks
    Wang, LC
    Der, S
    Nasrabadi, NM
    Rizvi, SA
    ALGORITHMS, DEVICES, AND SYSTEMS FOR OPTICAL INFORMATION PROCESSING, 1998, 3466 : 278 - 289
  • [4] SAR Automatic Target Recognition Based on Deep Convolutional Neural Network
    Xu, Ying
    Liu, Kaipin
    Ying, Zilu
    Shang, Lijuan
    Liu, Jian
    Zhai, Yikui
    Piuri, Vincenzo
    Scotti, Fabio
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 656 - 667
  • [5] Automatic Triage of 12-Lead ECGs Using Deep Convolutional Neural Networks
    van de Leur, Rutger R.
    Blom, Lennart J.
    Gavves, Efstratios
    Hof, Irene E.
    van der Heijden, Jeroen F.
    Clappers, Nick C.
    Doevendans, Pieter A.
    Hassink, Rutger J.
    van Es, Rene
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2020, 9 (10):
  • [6] Automatic Recognition of Soybean Leaf Diseases Using UAV Images and Deep Convolutional Neural Networks
    Tetila, Everton Castelao
    Machado, Bruno Brandoli
    Menezes, Gabriel Kirsten
    Oliveira, Adair da Silva
    Alvarez, Marco
    Amorim, Willian Paraguassu
    de Souza Belete, Nicolas Alessandro
    da Silva, Gercina Goncalves
    Pistori, Hemerson
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (05) : 903 - 907
  • [7] Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition
    He Fengshou
    He You
    Liu Zhunga
    Xu Cong'an
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (01) : 119 - 131
  • [8] Handwritten Hangul recognition using deep convolutional neural networks
    In-Jung Kim
    Xiaohui Xie
    International Journal on Document Analysis and Recognition (IJDAR), 2015, 18 : 1 - 13
  • [9] A Deep Learning Approach for Automatic Ionogram Parameters Recognition With Convolutional Neural Networks
    Sherstyukov, Ruslan
    Moges, Samson
    Kozlovsky, Alexander
    Ulich, Thomas
    EARTH AND SPACE SCIENCE, 2024, 11 (10)
  • [10] Hand Gesture Recognition Using Deep Convolutional Neural Networks
    Strezoski, Gjorgji
    Stojanovski, Dario
    Dimitrovski, Ivica
    Madjarov, Gjorgji
    ICT INNOVATIONS 2016: COGNITIVE FUNCTIONS AND NEXT GENERATION ICT SYSTEMS, 2018, 665 : 49 - 58