Three-dimensional magnetotelluric inversion: data-space method

被引:355
作者
Siripunvaraporn, W
Egbert, G
Lenbury, Y
Uyeshima, M
机构
[1] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand
[2] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[3] Mahidol Univ, Fac Sci, Dept Math, Bangkok 10400, Thailand
[4] Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan
基金
日本学术振兴会;
关键词
magnetotellurics; data-space method; 3D inversion; Occam's inversion;
D O I
10.1016/j.pepi.2004.08.023
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A three-dimensional magnetotelluric (MT) minimum structure inversion algorithm has been developed based on a data-space variant of the Occam approach. Computational costs associated with construction and inversion of model-space matrices make a model-space Occam approach to 3D NIT inversion impractical. These difficulties are overcome with a data-space approach, where matrix dimensions depend on the size of the data set, rather than the number of model parameters. With the transformation to data space it becomes feasible to invert modest 3D NIT data sets on a PC. To reduce computational time, a relaxed convergence criterion is used for the iterative forward modeling code used to compute the sensitivity matrix. This allows reduction in computational time by more than 70%, without affecting the inversion results. Numerical experiments with synthetic data show that reasonable fits can be obtained within a small number of iterations, with a few additional iterations required to eliminate unnecessary structure and find the model with minimum norm. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 27 条
[1]   Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons [J].
Avdeev, DB ;
Kuvshinov, AV ;
Pankratov, OV ;
Newman, GA .
GEOPHYSICS, 2002, 67 (02) :413-426
[2]   High-performance three-dimensional electromagnetic modelling using modified Neumann series. Wide-band numerical solution and examples [J].
Avdeev, DB ;
Kuvshinov, AV ;
Pankratov, OV ;
Newman, GA .
JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1997, 49 (11-12) :1519-1539
[3]   Generalized inversion of a global numerical weather prediction model [J].
Bennett, AF ;
Chua, BS ;
Leslie, LM .
METEOROLOGY AND ATMOSPHERIC PHYSICS, 1996, 60 (1-3) :165-178
[4]   An inverse ocean modeling system [J].
Chua, B. S. ;
Bennett, A. F. .
OCEAN MODELLING, 2001, 3 (3-4) :137-165
[5]   OCCAMS INVERSION - A PRACTICAL ALGORITHM FOR GENERATING SMOOTH MODELS FROM ELECTROMAGNETIC SOUNDING DATA [J].
CONSTABLE, SC ;
PARKER, RL ;
CONSTABLE, CG .
GEOPHYSICS, 1987, 52 (03) :289-300
[6]   OCCAM INVERSION TO GENERATE SMOOTH, 2-DIMENSIONAL MODELS FROM MAGNETOTELLURIC DATA [J].
DEGROOTHEDLIN, C ;
CONSTABLE, S .
GEOPHYSICS, 1990, 55 (12) :1613-1624
[7]   Tidal data inversion: interpolation and inference [J].
Egbert, GD .
PROGRESS IN OCEANOGRAPHY, 1997, 40 (1-4) :53-80
[8]   TOPEX/POSEIDON TIDES ESTIMATED USING A GLOBAL INVERSE MODEL [J].
EGBERT, GD ;
BENNETT, AF ;
FOREMAN, MGG .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1994, 99 (C12) :24821-24852
[9]  
Farquharson C. G., 2002, P 16 WORKSH EL DAT S
[10]   3-DIMENSIONAL MAGNETOTELLURIC INVERSION USING CONJUGATE GRADIENTS [J].
MACKIE, RL ;
MADDEN, TR .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1993, 115 (01) :215-229