Improving the Learnability of Machine Learning APIs by Semi-Automated API Wrapping

被引:0
作者
Reimann, Lars [1 ]
Kniesel-Wuensche, Guenter [1 ]
机构
[1] Univ Bonn, Inst Comp Sci 3, Smart Data Analyt, Bonn, Germany
来源
2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: NEW IDEAS AND EMERGING RESULTS (ICSE-NIER 2022) | 2022年
关键词
APIs; libraries; usability; learnability; machine learning;
D O I
10.1145/3510455.3512789
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A major hurdle for students and professional software developers who want to enter the world of machine learning (ML), is mastering not just the scientific background but also the available ML APIs. Therefore, we address the challenge of creating APIs that are easy to learn and use, especially by novices. However, it is not clear how this can be achieved without compromising expressiveness. We investigate this problem for scikit-learn, a widely used ML API. In this paper, we analyze its use by the Kaggle community, identifying unused and apparently useless parts of the API that can be eliminated without affecting client programs. In addition, we discuss usability issues in the remaining parts, propose related design improvements and show how they can be implemented by semi-automated wrapping of the existing third-party API.
引用
收藏
页码:46 / 50
页数:5
相关论文
共 35 条
  • [31] Automated prediction and design of PBL connectors using physics-integrated explainable machine learning and user-friendly web API
    Mou, Ben
    Lang, Xin
    Fu, Yuguang
    STRUCTURES, 2025, 73
  • [32] Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry
    Casas-Rojo, Jose-Manuel
    Ventura, Paula Sol
    Santos, Juan Miguel Anton
    de Latierro, Aitor Ortiz
    Arevalo-Lorido, Jose Carlos
    Mauri, Marc
    Rubio-Rivas, Manuel
    Gonzalez-Vega, Rocio
    Giner-Galvan, Vicente
    Otero Perpina, Barbara
    Fonseca-Aizpuru, Eva
    Muino, Antonio
    Del Corral-Beamonte, Esther
    Gomez-Huelgas, Ricardo
    Arnalich-Fernandez, Francisco
    Llorente Barrio, Monica
    Sancha-Lloret, Aresio
    Lorite, Isabel Rabago
    Loureiro-Amigo, Jose
    Pintos-Martinez, Santiago
    Garcia-Sardon, Eva
    Montano-Martinez, Adrian
    Rojano-Rivero, Maria Gloria
    Ramos-Rincon, Jose-Manuel
    Lopez-Escobar, Alejandro
    INTERNAL AND EMERGENCY MEDICINE, 2023, 18 (06) : 1711 - 1722
  • [33] Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry
    José-Manuel Casas-Rojo
    Paula Sol Ventura
    Juan Miguel Antón Santos
    Aitor Ortiz de Latierro
    José Carlos Arévalo-Lorido
    Marc Mauri
    Manuel Rubio-Rivas
    Rocío González-Vega
    Vicente Giner-Galvañ
    Bárbara Otero Perpiñá
    Eva Fonseca-Aizpuru
    Antonio Muiño
    Esther Del Corral-Beamonte
    Ricardo Gómez-Huelgas
    Francisco Arnalich-Fernández
    Mónica Llorente Barrio
    Aresio Sancha-Lloret
    Isabel Rábago Lorite
    José Loureiro-Amigo
    Santiago Pintos-Martínez
    Eva García-Sardón
    Adrián Montaño-Martínez
    María Gloria Rojano-Rivero
    José-Manuel Ramos-Rincón
    Alejandro López-Escobar
    Internal and Emergency Medicine, 2023, 18 : 1711 - 1722
  • [34] Automated Text Annotation Using a Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
    Saifullah, Shoffan
    Drezewski, Rafal
    Dwiyanto, Felix Andika
    Aribowo, Agus Sasmito
    Fauziah, Yuli
    Cahyana, Nur Heri
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [35] Automated Metal Cleanliness Analyzer (AMCA): Improving Digital Image Analysis of PoDFA Micrographs by Combining Deterministic Image Segmentation and Unsupervised Machine Learning
    Zedel, Hannes
    Vada, Eystein
    Fritzsch, Robert
    Akhtar, Shahid
    Aune, Ragnhild E.
    LIGHT METALS 2024, 2024, : 977 - 983