Analysis of functionally graded plates by a robust meshless method

被引:94
作者
Ferreira, A. J. M.
Roque, C. M. C.
Jorge, R. M. N.
Fasshauer, G. E.
Batra, R. C.
机构
[1] Univ Porto, Oporto, Portugal
[2] IIT, Chicago, IL 60616 USA
[3] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
关键词
meshfree method; radial basis functions; shape parameter optimization; third-order shear deformation theory;
D O I
10.1080/15376490701672732
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analysis of static deformations of functionally graded plates is performed by using the collocation method, the radial basis functions and a higher-order shear deformation theory. The collocation method is truly meshless, allowing a fast and simple domain and boundary discretization. We select the shape parameter in the radial basis functions by an optimization procedure based on the cross-validation technique, and use the Mori-Tanaka homogenization technique to deduce effective properties of functionally graded materials. Numerical tests show that the method is reliable, robust and produces accurate results.
引用
收藏
页码:577 / 587
页数:11
相关论文
共 55 条
[11]   Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates [J].
Cheng, ZQ ;
Batra, RC .
JOURNAL OF SOUND AND VIBRATION, 2000, 229 (04) :879-895
[12]   Functionally graded diamond-like carbon coatings on metallic substrates [J].
Choy, Kwang-Leong ;
Felix, Emmanuelle .
Materials Science and Engineering: A, 2000, 278 (1-2) :162-169
[13]   An h-p adaptive method using clouds [J].
Duarte, CA ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :237-262
[14]  
FASSHAUER GE, 1997, P 3 INT C CURV SURF, V2, P131
[15]  
FEDOSEYEV AI, 1990, COMPUT MATH APPL, V19, P147
[18]   Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method [J].
Ferreira, AJM ;
Batra, RC ;
Roque, CMC ;
Qian, LF ;
Martins, PALS .
COMPOSITE STRUCTURES, 2005, 69 (04) :449-457
[19]   Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions [J].
Gilhooley, D. F. ;
Batra, R. C. ;
Xiao, J. R. ;
McCarthy, M. A. ;
Gillespie, J. W., Jr. .
COMPOSITE STRUCTURES, 2007, 80 (04) :539-552
[20]   MULTIQUADRIC EQUATIONS OF TOPOGRAPHY AND OTHER IRREGULAR SURFACES [J].
HARDY, RL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (08) :1905-+