Analysis of functionally graded plates by a robust meshless method

被引:93
作者
Ferreira, A. J. M.
Roque, C. M. C.
Jorge, R. M. N.
Fasshauer, G. E.
Batra, R. C.
机构
[1] Univ Porto, Oporto, Portugal
[2] IIT, Chicago, IL 60616 USA
[3] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
关键词
meshfree method; radial basis functions; shape parameter optimization; third-order shear deformation theory;
D O I
10.1080/15376490701672732
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analysis of static deformations of functionally graded plates is performed by using the collocation method, the radial basis functions and a higher-order shear deformation theory. The collocation method is truly meshless, allowing a fast and simple domain and boundary discretization. We select the shape parameter in the radial basis functions by an optimization procedure based on the cross-validation technique, and use the Mori-Tanaka homogenization technique to deduce effective properties of functionally graded materials. Numerical tests show that the method is reliable, robust and produces accurate results.
引用
收藏
页码:577 / 587
页数:11
相关论文
共 55 条
[1]  
Atluri S.N., 2002, MESHLESS LOCAL PETRO
[2]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[3]  
Bathe K, 2007, Finite element procedures
[4]   Higher-order piezoelectric plate theory derived from a three-dimensional variational principle [J].
Batra, RC ;
Vidoli, S .
AIAA JOURNAL, 2002, 40 (01) :91-104
[5]   Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration [J].
Beatson, RK ;
Cherrie, JB ;
Mouat, CT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) :253-270
[6]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[7]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[8]   Exponential convergence and H-c multiquadric collocation method for partial differential equations [J].
Cheng, AHD ;
Golberg, MA ;
Kansa, EJ ;
Zammito, G .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (05) :571-594
[9]  
Cheng Z.Q., 2000, Arch. Mech, V52, P143
[10]   Three-dimensional thermoelastic deformations of a functionally graded elliptic plate [J].
Cheng, ZQ ;
Batra, RC .
COMPOSITES PART B-ENGINEERING, 2000, 31 (02) :97-106