Composition Analysis and Feature Selection of the Oral Microbiota Associated with Periodontal Disease

被引:64
作者
Chen, Wen-Pei [1 ]
Chang, Shih-Hao [2 ,3 ]
Tang, Chuan-Yi [4 ]
Liou, Ming-Li [5 ]
Tsai, Suh-Jen Jane [1 ]
Lin, Yaw-Ling [1 ,4 ]
机构
[1] Providence Univ, Dept Appl Chem, Taichung, Taiwan
[2] Chang Gung Mem Hosp, Linkou Med Ctr, Dept Periodont, Taoyuan, Taiwan
[3] Chang Gung Univ, Grad Inst Dent & Craniofacial Sci, Taoyuan, Taiwan
[4] Providence Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[5] Yuanpei Univ Med Technol, Dept Med Lab Sci & Biotechnol, Hsinchu, Taiwan
关键词
ACTINOBACILLUS-ACTINOMYCETEMCOMITANS; PORPHYROMONAS-GINGIVALIS; DIVERSITY; CLASSIFICATION; HEALTH; IDENTIFICATION; METAGENOMICS; INFECTIONS; PATHOGENS; PROFILES;
D O I
10.1155/2018/3130607
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Periodontitis is an inflammatory disease involving complex interactions between oral microorganisms and the host immune response. Understanding the structure of the microbiota community associated with periodontitis is essential for improving classifications and diagnoses of various types of periodontal diseases and will facilitate clinical decision-making. In this study, we used a 16S rRNA metagenomics approach to investigate and compare the compositions of the microbiota communities from 76 subgingival plagues samples, including 26 from healthy individuals and 50 from patients with periodontitis. Furthermore, we propose a novel feature selection algorithm for selecting features with more information from many variables with a combination of these features and machine learning methods were used to construct prediction models for predicting the health status of patients with periodontal disease. We identified a total of 12 phyla, 124 genera, and 355 species and observed differences between health-and periodontitis-associated bacterial communities at all phylogenetic levels. We discovered that the genera Porphyromonas, Treponema, Tannerella, Filifactor, and Aggregatibacter were more abundant in patients with periodontal disease, whereas Streptococcus, Haemophilus, Capnocytophaga, Gemella, Campylobacter, and Granulicatella were found at higher levels in healthy controls. Using our feature selection algorithm, random forests performed better in terms of predictive power than other methods and consumed the least amount of computational time.
引用
收藏
页数:14
相关论文
共 70 条
  • [1] Metagenomic Analysis of Brain Abscesses Identifies Specific Bacterial Associations
    Al Masalma, Mouhamad
    Lonjon, Michel
    Richet, Herve
    Dufour, Henry
    Roche, Pierre-Hugues
    Drancourt, Michel
    Raoult, Didier
    Fournier, Pierre-Edouard
    [J]. CLINICAL INFECTIOUS DISEASES, 2012, 54 (02) : 202 - 210
  • [2] The Expansion of the Microbiological Spectrum of Brain Abscesses with Use of Multiple 16S Ribosomal DNA Sequencing
    Al Masalma, Mouhamad
    Armougom, Fabrice
    Scheld, W. Michael
    Dufour, Henri
    Roche, Pierre-Hugues
    Drancourt, Michel
    Raoult, Didier
    [J]. CLINICAL INFECTIOUS DISEASES, 2009, 48 (09) : 1169 - 1178
  • [3] Putative periodontal pathogens in subgingival plaque of young adults with and without early-onset periodontitis
    Albandar, JM
    Brown, LJ
    Loe, H
    [J]. JOURNAL OF PERIODONTOLOGY, 1997, 68 (10) : 973 - 981
  • [4] Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/NMETH.3103, 10.1038/nmeth.3103]
  • [5] [Anonymous], 2008, PROC 25 INT C MACH L
  • [6] [Anonymous], PLOS ONE
  • [7] Armitage G C, 1999, Ann Periodontol, V4, P1, DOI 10.1902/annals.1999.4.1.1
  • [8] SmashCommunity: a metagenomic annotation and analysis tool
    Arumugam, Manimozhiyan
    Harrington, Eoghan D.
    Foerstner, Konrad U.
    Raes, Jeroen
    Bork, Peer
    [J]. BIOINFORMATICS, 2010, 26 (23) : 2977 - 2978
  • [9] The oral metagenome in health and disease
    Belda-Ferre, Pedro
    Alcaraz, Luis David
    Cabrera-Rubio, Raul
    Romero, Hector
    Simon-Soro, Aurea
    Pignatelli, Miguel
    Mira, Alex
    [J]. ISME JOURNAL, 2012, 6 (01) : 46 - 56
  • [10] QIIME allows analysis of high-throughput community sequencing data
    Caporaso, J. Gregory
    Kuczynski, Justin
    Stombaugh, Jesse
    Bittinger, Kyle
    Bushman, Frederic D.
    Costello, Elizabeth K.
    Fierer, Noah
    Pena, Antonio Gonzalez
    Goodrich, Julia K.
    Gordon, Jeffrey I.
    Huttley, Gavin A.
    Kelley, Scott T.
    Knights, Dan
    Koenig, Jeremy E.
    Ley, Ruth E.
    Lozupone, Catherine A.
    McDonald, Daniel
    Muegge, Brian D.
    Pirrung, Meg
    Reeder, Jens
    Sevinsky, Joel R.
    Tumbaugh, Peter J.
    Walters, William A.
    Widmann, Jeremy
    Yatsunenko, Tanya
    Zaneveld, Jesse
    Knight, Rob
    [J]. NATURE METHODS, 2010, 7 (05) : 335 - 336