Deep-water waves with vorticity: Symmetry and rotational behaviour

被引:11
作者
Ehrnstrom, Mats [1 ]
机构
[1] Lund Univ, Ctr Math Sci, S-22100 Lund, Sweden
关键词
symmetry; water waves; vorticity; nonlinear partial differential equation;
D O I
10.3934/dcds.2007.19.483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for steady, periodic, and rotational gravity deep-water waves, a monotone surface profile between troughs and crests implies symmetry. It is observed that if the vorticity function has a bounded derivative, then it vanishes as one approaches great depths.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 28 条
[1]   Stability and symmetry of solitary-wave solutions to systems modeling interactions of long waves [J].
Albert, J ;
Linares, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (03) :195-226
[2]  
[Anonymous], 2000, CAMBRIDGE TRACTS MAT
[3]  
[Anonymous], J ANAL MATH, DOI DOI 10.1007/BF02806385
[4]  
Berestycki H., 1988, J. Geom. Phys., V5
[5]   Symmetry of steady deep-water waves with vorticity [J].
Constantin, A ;
Escher, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :755-768
[6]   Symmetry of steady periodic surface water waves with vorticity [J].
Constantin, A ;
Escher, J .
JOURNAL OF FLUID MECHANICS, 2004, 498 :171-181
[7]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[8]   On the deep water wave motion [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07) :1405-1417
[9]   Symmetry of steady periodic gravity water waves with vorticity [J].
Constantin, Adrian ;
Ehrnstrom, Mats ;
Wahlen, Erik .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) :591-603
[10]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431