Continuums of positive solutions for classes of non-autonomous and non-local problems with strong singular term

被引:3
|
作者
Santos, Carlos Alberto [1 ]
Santos, Lais [2 ]
Mishra, Pawan Kumar [3 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Strongly-singular nonlinearities; Non-local Kirchhoff problems; Comparison principle for W-loc(1; p)(Omega) sub and supersolutions; Bifurcation theory; KIRCHHOFF-TYPE PROBLEMS; EXISTENCE; MULTIPLICITY; LAPLACIAN; EQUATIONS;
D O I
10.1016/j.matpur.2019.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show existence of continuums (closed and connected sets in R x C-0 ((Omega) over bar)) of positive solutions for non-local quasilinear problems with strongly-singular reaction term on a bounded domain in R-N with N >= 2. We approached non-autonomous and non-local equations by applying the Bifurcation Theory to the corresponding epsilon-perturbed problems and using a comparison principle for W-loc(1,p)(Omega)-sub and supersolutions to obtain qualitative properties of the epsilon-continuum limit. Moreover, this technique empowers us to study a strongly-singular and non-homogeneous Kirchhoff problem to get the existence of a continuum of positive solutions. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 50 条
  • [21] Shilnikov type solutions under strong non-autonomous perturbation
    Tuma, E
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 71 (02) : 315 - 325
  • [22] Existence of Positive Solutions for N-term Non-autonomous Fractional Differential Equations
    A. Babakhani
    Varsha Daftardar-Gejji
    Positivity, 2005, 9 : 193 - 206
  • [23] ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR NON-AUTONOMOUS SEMI-LINEAR SYSTEMS WITH NON-INSTANTANEOUS IMPULSES, DELAY, AND NON-LOCAL CONDITIONS
    LALVAY, S. E. B. A. S. T. I. A. N.
    PADILLA-SEGARRA, A. D. R. I. A. N.
    ZOUHAIR, W. A. L. I. D.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 295 - 310
  • [24] Existence of positive solutions for N-term non-autonomous fractional differential equations
    Babakhani, A
    Daftardar-Gejji, V
    POSITIVITY, 2005, 9 (02) : 193 - 206
  • [25] On non-autonomous evolutionary problems
    Rainer Picard
    Sascha Trostorff
    Marcus Waurick
    Maria Wehowski
    Journal of Evolution Equations, 2013, 13 : 751 - 776
  • [26] Positive solutions to Sturm-Liouville problems with non-local boundary conditions
    Jankowski, T.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 119 - 138
  • [27] On non-autonomous evolutionary problems
    Picard, Rainer
    Trostorff, Sascha
    Waurick, Marcus
    Wehowski, Maria
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (04) : 751 - 776
  • [28] Periodic Solutions of Some Classes of One Dimensional Non-autonomous Equation
    Akram, Saima
    Nawaz, Allah
    Yasmin, Nusrat
    Ghaffar, Abdul
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    FRONTIERS IN PHYSICS, 2020, 8
  • [29] Positive solutions of a system of non-autonomous fractional differential equations
    Daftardar-Gejji, V
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) : 56 - 64
  • [30] NON-AUTONOMOUS PARABOLIC PROBLEMS WITH SINGULAR INITIAL DATA IN WEIGHTED SPACES
    Li, Xiaojun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (04) : 1215 - 1245