Continuums of positive solutions for classes of non-autonomous and non-local problems with strong singular term

被引:3
作者
Santos, Carlos Alberto [1 ]
Santos, Lais [2 ]
Mishra, Pawan Kumar [3 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 131卷
关键词
Strongly-singular nonlinearities; Non-local Kirchhoff problems; Comparison principle for W-loc(1; p)(Omega) sub and supersolutions; Bifurcation theory; KIRCHHOFF-TYPE PROBLEMS; EXISTENCE; MULTIPLICITY; LAPLACIAN; EQUATIONS;
D O I
10.1016/j.matpur.2019.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show existence of continuums (closed and connected sets in R x C-0 ((Omega) over bar)) of positive solutions for non-local quasilinear problems with strongly-singular reaction term on a bounded domain in R-N with N >= 2. We approached non-autonomous and non-local equations by applying the Bifurcation Theory to the corresponding epsilon-perturbed problems and using a comparison principle for W-loc(1,p)(Omega)-sub and supersolutions to obtain qualitative properties of the epsilon-continuum limit. Moreover, this technique empowers us to study a strongly-singular and non-homogeneous Kirchhoff problem to get the existence of a continuum of positive solutions. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 50 条
  • [11] Periodic Solutions of Some Classes of One Dimensional Non-autonomous Equation
    Akram, Saima
    Nawaz, Allah
    Yasmin, Nusrat
    Ghaffar, Abdul
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    FRONTIERS IN PHYSICS, 2020, 8
  • [12] NON-AUTONOMOUS PARABOLIC PROBLEMS WITH SINGULAR INITIAL DATA IN WEIGHTED SPACES
    Li, Xiaojun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (04) : 1215 - 1245
  • [13] Heteroclinic Solutions for Classical and Singular φ-Laplacian Non-Autonomous Differential Equations
    Minhos, Feliz
    AXIOMS, 2019, 8 (01)
  • [14] MULTIPLE POSITIVE SOLUTIONS OF RESONANT AND NON-RESONANT NON-LOCAL FOURTH-ORDER BOUNDARY VALUE PROBLEMS
    Webb, J. R. L.
    Zima, M.
    GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) : 225 - 240
  • [15] Positive solutions to Sturm-Liouville problems with non-local boundary conditions
    Jankowski, T.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 119 - 138
  • [16] On non-autonomous evolutionary problems
    Picard, Rainer
    Trostorff, Sascha
    Waurick, Marcus
    Wehowski, Maria
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (04) : 751 - 776
  • [17] SEQUENCES OF WEAK SOLUTIONS FOR NON-LOCAL ELLIPTIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITION
    Bisci, Giovanni Molica
    Pizzimenti, Pasquale F.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) : 779 - 809
  • [18] Infinitely many solutions for non-local problems with broken symmetry
    Bartolo, Rossella
    De Napoli, Pablo L.
    Salvatore, Addolorata
    ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (03) : 353 - 364
  • [19] NONTRIVIAL SOLUTIONS OF NON-AUTONOMOUS DIRICHLET FRACTIONAL DISCRETE PROBLEMS
    Cabada, Alberto
    Dimitrov, Nikolay
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 980 - 995
  • [20] Concentration of solutions for non-autonomous double-phase problems with lack of compactness
    Zhang, Weiqiang
    Zuo, Jiabin
    Radulescu, Vicentiu D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):