Continuums of positive solutions for classes of non-autonomous and non-local problems with strong singular term

被引:3
|
作者
Santos, Carlos Alberto [1 ]
Santos, Lais [2 ]
Mishra, Pawan Kumar [3 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Strongly-singular nonlinearities; Non-local Kirchhoff problems; Comparison principle for W-loc(1; p)(Omega) sub and supersolutions; Bifurcation theory; KIRCHHOFF-TYPE PROBLEMS; EXISTENCE; MULTIPLICITY; LAPLACIAN; EQUATIONS;
D O I
10.1016/j.matpur.2019.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show existence of continuums (closed and connected sets in R x C-0 ((Omega) over bar)) of positive solutions for non-local quasilinear problems with strongly-singular reaction term on a bounded domain in R-N with N >= 2. We approached non-autonomous and non-local equations by applying the Bifurcation Theory to the corresponding epsilon-perturbed problems and using a comparison principle for W-loc(1,p)(Omega)-sub and supersolutions to obtain qualitative properties of the epsilon-continuum limit. Moreover, this technique empowers us to study a strongly-singular and non-homogeneous Kirchhoff problem to get the existence of a continuum of positive solutions. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 50 条
  • [1] The asymptotic behavior of the strong solutions for a non-autonomous non-local PDE model with delay
    Li, Xiang
    Li, Zhixiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (9-10) : 3681 - 3694
  • [2] POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS
    Papageorgiou, Nikolaos s.
    Qin, Dongdong
    Radulescu, Vicentiu d.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [3] A non-local non-autonomous diffusion problem: linear and sublinear cases
    Tarcyana S. Figueiredo-Sousa
    Cristian Morales-Rodrigo
    Antonio Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [4] Approximation result for non-autonomous and non-local rock fracture models
    Goufo, E. F. Doungmo
    Kubeka, A.
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (01) : 217 - 233
  • [5] The existence of positive solutions to a non-local singular boundary value problem
    O'Regan, D
    Stanek, S
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (02) : 235 - 247
  • [6] Approximation result for non-autonomous and non-local rock fracture models
    E. F. Doungmo Goufo
    A. Kubeka
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 217 - 233
  • [7] A non-local non-autonomous diffusion problem: linear and sublinear cases
    Figueiredo-Sousa, Tarcyana S.
    Morales-Rodrigo, Cristian
    Suarez, Antonio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [8] Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains
    Lancelotti, Sergio
    Molle, Riccardo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [9] Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains
    Sergio Lancelotti
    Riccardo Molle
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [10] COMBINED EFFECTS FOR NON-AUTONOMOUS SINGULAR BIHARMONIC PROBLEMS
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 2057 - 2068