Continuums of positive solutions for classes of non-autonomous and non-local problems with strong singular term

被引:3
|
作者
Santos, Carlos Alberto [1 ]
Santos, Lais [2 ]
Mishra, Pawan Kumar [3 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 131卷
关键词
Strongly-singular nonlinearities; Non-local Kirchhoff problems; Comparison principle for W-loc(1; p)(Omega) sub and supersolutions; Bifurcation theory; KIRCHHOFF-TYPE PROBLEMS; EXISTENCE; MULTIPLICITY; LAPLACIAN; EQUATIONS;
D O I
10.1016/j.matpur.2019.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show existence of continuums (closed and connected sets in R x C-0 ((Omega) over bar)) of positive solutions for non-local quasilinear problems with strongly-singular reaction term on a bounded domain in R-N with N >= 2. We approached non-autonomous and non-local equations by applying the Bifurcation Theory to the corresponding epsilon-perturbed problems and using a comparison principle for W-loc(1,p)(Omega)-sub and supersolutions to obtain qualitative properties of the epsilon-continuum limit. Moreover, this technique empowers us to study a strongly-singular and non-homogeneous Kirchhoff problem to get the existence of a continuum of positive solutions. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 50 条
  • [1] A non-local non-autonomous diffusion problem: linear and sublinear cases
    Figueiredo-Sousa, Tarcyana S.
    Morales-Rodrigo, Cristian
    Suarez, Antonio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [2] COMBINED EFFECTS FOR NON-AUTONOMOUS SINGULAR BIHARMONIC PROBLEMS
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 2057 - 2068
  • [3] POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS
    Papageorgiou, Nikolaos s.
    Qin, Dongdong
    Radulescu, Vicentiu d.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [4] Positive solutions to three classes of non-local fourth-order problems with derivative-dependent nonlinearities
    Zhang, Guowei
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (11) : 1 - 27
  • [5] Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains
    Lancelotti, Sergio
    Molle, Riccardo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [6] Positive periodic solutions to the forced non-autonomous Duffing equations
    Sremr, Jiri
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 295 - 307
  • [7] Attractors for non-autonomous parabolic problems with singular initial data
    Li, Xiaojun
    Ruan, Shigui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (03) : 728 - 757
  • [8] THEORY AND COMPUTATION FOR MULTIPLE POSITIVE SOLUTIONS OF NON-LOCAL PROBLEMS AT RESONANCE
    Novac, Adela
    Precup, Radu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (02): : 486 - 497
  • [9] Positive solutions for some non-autonomous Schrodinger-Poisson systems
    Cerami, Giovanna
    Vaira, Giusi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) : 521 - 543
  • [10] Two positive solutions to non-autonomous Schrodinger-Poisson systems
    Sun, Juntao
    Wu, Tsung-fang
    Feng, Zhaosheng
    NONLINEARITY, 2019, 32 (10) : 4002 - 4032