Certain generalized fractional integral inequalities

被引:11
作者
Nisar, Kottakkaran Sooppy [1 ]
Rahman, Gauhar [2 ]
Khan, Aftab [2 ]
Tassaddiq, Asifa [3 ]
Abouzaid, Moheb Saad [1 ,4 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Al Dawaser 11991, Riyadh Region, Saudi Arabia
[2] Shaheed Benazir Bhutto Univ, Dept Math, Upper Dir, Khyber Pakhtoon, Pakistan
[3] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah 11952, Saudi Arabia
[4] Kafrelshiekh Univ, Fac Sci, Dept Math, Kafrelshiekh, Egypt
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 02期
关键词
Marichev-Saigo-Maeda fractional integral operator; fractional integral inequalities; GRUSS TYPE;
D O I
10.3934/math.2020108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The principal aim of this article is to establish certain generalized fractional integral inequalities by utilizing the Marichev-Saigo-Maeda (MSM) fractional integral operator. Some new classes of generalized fractional integral inequalities for a class of n (n is an element of N) positive continuous and decreasing functions on [a, b] by using the MSM fractional integral operator also derived.
引用
收藏
页码:1588 / 1602
页数:15
相关论文
共 37 条
[1]   Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals [J].
Agarwal, Praveen ;
Jleli, Mohamed ;
Tomar, Muharrem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[2]   Some new inequalities for (k, s)-fractional integrals [J].
Aldhaifallah, M. ;
Tomar, M. ;
Nisar, K. S. ;
Purohit, S. D. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09) :5374-5381
[3]  
[Anonymous], 2019, MATHEMATICS BASEL, DOI DOI 10.3390/MATH7040364
[4]   On the global existence of solutions to a class of fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1835-1841
[5]  
Dahmani Z., 2010, INT J NONLIN SCI NUM, V9, P493
[6]  
Dahmani Z., 2010, J. Adv. Res. Pure Math, V2, P31, DOI [10.5373/jarpm.392.032110, DOI 10.5373/JARPM.392.032110]
[7]   Some integral inequalities involving Saigo fractional integral operators [J].
Houas, Mohamed .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (03) :681-694
[8]  
Huang C.-J., 2019, Aust. J. Math. Anal. Appl, V16, P1
[9]  
Joshi S., 2019, Bull. Transilv. Univ. Bra, V12, P41
[10]  
Kilbas A. A., 2001, J. Korean Math. Soc, V38, P1191