The Lidskii trace property and the nest approximation property in Banach spaces

被引:3
作者
Figiel, T. [1 ]
Johnson, W. B. [2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00901 Warsaw, Poland
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Approximation property; Lidskii trace property; OPERATORS; ALGEBRAS;
D O I
10.1016/j.jfa.2016.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Banach space X, the Lidskii trace property is equivalent to the nest approximation property; that is, for every nuclear operator on X that has summable eigenvalues, the trace of the operator is equal to the sum of the eigenvalues if and only if for every nest N of closed subspaces of X, there is a net of finite rank operators on X, each of which leaves invariant all subspaces in N, that converges uniformly to the identity on compact subsets of X. The Volterra nest in L-p(0, 1), 1 <= p <= infinity, is shown to have the Lidskii trace property. A simpler duality argument gives an easy proof of the result [2, Theorem 3.1] that an atomic Boolean subspace lattice that has only two atoms must have the strong rank one density property. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 23 条
[1]   SIMILARITY OF NESTS IN L1 [J].
ALLEN, GD ;
LARSON, DR ;
WARD, JD ;
WOODWARD, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 92 (01) :49-76
[2]  
[Anonymous], 1956, Bull. Soc. Math. Fr., DOI DOI 10.24033/BSMF.1476
[3]  
Argyros S., 1991, MEM AM MATH SOC, V445
[4]  
Davidson K.R., 1988, NEST ALGEBRAS
[5]  
ERDOS J. A., 1968, J. London Math. Soc., V43, P391
[6]  
Erdos J.A., 1974, B LOND MATH SOC, V6, P47
[7]   The dual form of the approximation property for a Banach space and a subspace [J].
Figiel, T. ;
Johnson, W. B. .
STUDIA MATHEMATICA, 2015, 231 (03) :287-292
[8]   Some approximation properties of Banach spaces and Banach lattices [J].
Figiel, Tadeusz ;
Johnson, William B. ;
Pelczynski, Aleksander .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) :199-231
[9]   DUALITY IN SPACES OF OPERATORS AND SMOOTH NORMS ON BANACH-SPACES [J].
GODEFROY, G ;
SAPHAR, PD .
ILLINOIS JOURNAL OF MATHEMATICS, 1988, 32 (04) :672-695
[10]  
Grothendieck A., 1955, Produits Tensoriels Topologiques et Espaces Nuclaires, VVolume 16