Informatics derived materials databases for multifunctional properties

被引:21
作者
Broderick, Scott [1 ]
Rajan, Krishna
机构
[1] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
materials informatics; scintillator; quantitative structure-property relationships; PARTIAL LEAST-SQUARES; INORGANIC SCINTILLATORS; REGRESSION; DESIGN; CLASSIFICATION; TUTORIAL; SPECTRA; CE3+; GENE;
D O I
10.1088/1468-6996/16/1/013501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this review, we provide an overview of the development of quantitative structure- property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure- property relationships; and even more importantly we are now in a position to build materials databases based on design `intent' and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
[21]   A Machine Learning Tool for Materials Informatics [J].
Wang, Zhi-Lei ;
Ogawa, Toshio ;
Adachi, Yoshitaka .
ADVANCED THEORY AND SIMULATIONS, 2020, 3 (01)
[22]   Informatics Infrastructure for the Materials Genome Initiative [J].
Dima, Alden ;
Bhaskarla, Sunil ;
Becker, Chandler ;
Brady, Mary ;
Campbell, Carelyn ;
Dessauw, Philippe ;
Hanisch, Robert ;
Kattner, Ursula ;
Kroenlein, Kenneth ;
Newrock, Marcus ;
Peskin, Adele ;
Plante, Raymond ;
Li, Sheng-Yen ;
Rigodiat, Pierre-Francois ;
Amaral, Guillaume Sousa ;
Trautt, Zachary ;
Schmitt, Xavier ;
Warren, James ;
Youssef, Sharief .
JOM, 2016, 68 (08) :2053-2064
[23]   Strategies for accelerating the adoption of materials informatics [J].
Ward, Logan ;
Aykol, Muratahan ;
Blaiszik, Ben ;
Foster, Ian ;
Meredig, Bryce ;
Saal, James ;
Suram, Santosh .
MRS BULLETIN, 2018, 43 (09) :683-689
[24]   Technique for designing materials with strong adhesion by use of materials informatics [J].
Iwasaki T. .
Journal of Japan Institute of Electronics Packaging, 2020, 23 (01) :105-111
[25]   Materials Informatics Technology for Using Bio-based Materials [J].
Iwasaki, Tomio .
2022 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP 2022), 2022, :245-246
[26]   Systematic searches for new inorganic materials assisted by materials informatics [J].
Katsura, Yukari ;
Akiyama, Masakazu ;
Morito, Haruhiko ;
Fujioka, Masaya ;
Sugahara, Tohru .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2025, 26 (01)
[27]   Materials Informatics Technology for Using Eco-Friendly Materials [J].
Iwasaki, Tomio .
2021 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP 2021), 2021, :179-180
[28]   Descriptors for dielectric constants of perovskite-type oxides by materials informatics with first-principles density functional theory [J].
Noda, Yusuke ;
Otake, Masanari ;
Nakayama, Masanobu .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2020, 21 (01) :92-99
[29]   Materials informatics and study on its further development [J].
Wei, QY ;
Peng, XD ;
Liu, XG ;
Xie, WD .
CHINESE SCIENCE BULLETIN, 2006, 51 (04) :498-504
[30]   Transfer learning for materials informatics using crystal graph convolutional neural network [J].
Lee, Joohwi ;
Asahi, Ryoji .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 190