Informatics derived materials databases for multifunctional properties

被引:21
|
作者
Broderick, Scott [1 ]
Rajan, Krishna
机构
[1] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
materials informatics; scintillator; quantitative structure-property relationships; PARTIAL LEAST-SQUARES; INORGANIC SCINTILLATORS; REGRESSION; DESIGN; CLASSIFICATION; TUTORIAL; SPECTRA; CE3+; GENE;
D O I
10.1088/1468-6996/16/1/013501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this review, we provide an overview of the development of quantitative structure- property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure- property relationships; and even more importantly we are now in a position to build materials databases based on design `intent' and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Growing field of materials informatics: databases and artificial intelligence
    Lopez-Bezanilla, Alejandro
    Littlewood, Peter
    MRS COMMUNICATIONS, 2020, 10 (01) : 1 - 10
  • [2] Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review
    Wan, Xiao
    Feng, Wentao
    Wang, Yunpeng
    Wang, Haidong
    Zhang, Xing
    Deng, Chengcheng
    Yang, Nuo
    NANO LETTERS, 2019, 19 (06) : 3387 - 3395
  • [3] Materials informatics
    Seeram Ramakrishna
    Tong-Yi Zhang
    Wen-Cong Lu
    Quan Qian
    Jonathan Sze Choong Low
    Jeremy Heiarii Ronald Yune
    Daren Zong Loong Tan
    Stéphane Bressan
    Stefano Sanvito
    Surya R. Kalidindi
    Journal of Intelligent Manufacturing, 2019, 30 : 2307 - 2326
  • [4] Materials informatics
    Ramakrishna, Seeram
    Zhang, Tong-Yi
    Lu, Wen-Cong
    Qian, Quan
    Low, Jonathan Sze Choong
    Yune, Jeremy Heiarii Ronald
    Tan, Daren Zong Loong
    Bressan, Stephane
    Sanvito, Stefano
    Kalidindi, Surya R.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2019, 30 (06) : 2307 - 2326
  • [5] Atomistic calculations and materials informatics: A review
    Ward, Logan
    Wolverton, Chris
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (03) : 167 - 176
  • [6] Methods, progresses, and opportunities of materials informatics
    Li, Chen
    Zheng, Kun
    INFOMAT, 2023, 5 (08)
  • [7] Materials informatics and sustainability-The case for urgency
    Melia, Hannah R.
    Muckley, Eric S.
    Saal, James E.
    DATA-CENTRIC ENGINEERING, 2021, 2 (40):
  • [8] Materials informatics approach to understand aluminum alloys
    Tamura, Ryo
    Watanabe, Makoto
    Mamiya, Hiroaki
    Washio, Kota
    Yano, Masao
    Danno, Katsunori
    Kato, Akira
    Shoji, Tetsuya
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2020, 21 (01) : 540 - 551
  • [9] Application of materials informatics on crystalline materials for two-body terms approximation
    Van-Doan Nguyen
    Tien-Lam Pham
    Dam, Hieu-Chi
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 166 : 155 - 161
  • [10] Materials Informatics for Heat Transfer: Recent Progresses and Perspectives
    Ju, Shenghong
    Shiomi, Junichiro
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2019, 23 (02) : 157 - 172